6.
Peel D, Quayle J
. Microbial growth on C1 compounds. I. Isolation and characterization of Pseudomonas AM 1. Biochem J. 1961; 81:465-9.
PMC: 1243366.
DOI: 10.1042/bj0810465.
View
7.
Toyama H, Anthony C, Lidstrom M
. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. FEMS Microbiol Lett. 1998; 166(1):1-7.
DOI: 10.1111/j.1574-6968.1998.tb13175.x.
View
8.
Gibson D, Young L, Chuang R, Venter J, Hutchison 3rd C, Smith H
. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009; 6(5):343-5.
DOI: 10.1038/nmeth.1318.
View
9.
Sonntag F, Buchhaupt M, Schrader J
. Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Appl Microbiol Biotechnol. 2014; 98(10):4533-44.
DOI: 10.1007/s00253-013-5456-y.
View
10.
Schada von Borzyskowski L, Remus-Emsermann M, Weishaupt R, Vorholt J, Erb T
. A set of versatile brick vectors and promoters for the assembly, expression, and integration of synthetic operons in Methylobacterium extorquens AM1 and other alphaproteobacteria. ACS Synth Biol. 2014; 4(4):430-43.
DOI: 10.1021/sb500221v.
View
11.
Kaczmarczyk A, Vorholt J, Francez-Charlot A
. Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl Environ Microbiol. 2013; 79(21):6795-802.
PMC: 3811519.
DOI: 10.1128/AEM.02296-13.
View
12.
Eaton R
. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol. 1997; 179(10):3171-80.
PMC: 179094.
DOI: 10.1128/jb.179.10.3171-3180.1997.
View
13.
Bertani G
. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951; 62(3):293-300.
PMC: 386127.
DOI: 10.1128/jb.62.3.293-300.1951.
View
14.
Liang W, Cui L, Cui J, Yu K, Yang S, Wang T
. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Metab Eng. 2016; 39:159-168.
DOI: 10.1016/j.ymben.2016.11.010.
View
15.
Chubiz L, Purswani J, Carroll S, Marx C
. A novel pair of inducible expression vectors for use in Methylobacterium extorquens. BMC Res Notes. 2013; 6:183.
PMC: 3694467.
DOI: 10.1186/1756-0500-6-183.
View
16.
Sonntag F, Kroner C, Lubuta P, Peyraud R, Horst A, Buchhaupt M
. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metab Eng. 2015; 32:82-94.
DOI: 10.1016/j.ymben.2015.09.004.
View
17.
Hu B, Lidstrom M
. Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnol Biofuels. 2014; 7(1):156.
PMC: 4207312.
DOI: 10.1186/s13068-014-0156-0.
View
18.
Schada von Borzyskowski L, Sonntag F, Poschel L, Vorholt J, Schrader J, Erb T
. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1. ACS Synth Biol. 2017; 7(1):86-97.
DOI: 10.1021/acssynbio.7b00229.
View
19.
Ochsner A, Sonntag F, Buchhaupt M, Schrader J, Vorholt J
. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol. 2014; 99(2):517-34.
DOI: 10.1007/s00253-014-6240-3.
View
20.
Lim C, Villada J, Chalifour A, Duran M, Lu H, Lee P
. Designing and Engineering AM1 for Itaconic Acid Production. Front Microbiol. 2019; 10:1027.
PMC: 6520949.
DOI: 10.3389/fmicb.2019.01027.
View