6.
Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y
. The coding capacity of SARS-CoV-2. Nature. 2020; 589(7840):125-130.
DOI: 10.1038/s41586-020-2739-1.
View
7.
Chu H, Chan J, Yuen T, Shuai H, Yuan S, Wang Y
. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe. 2020; 1(1):e14-e23.
PMC: 7173822.
DOI: 10.1016/S2666-5247(20)30004-5.
View
8.
Davidson A, Kavanagh Williamson M, Lewis S, Shoemark D, Carroll M, Heesom K
. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 2020; 12(1):68.
PMC: 7386171.
DOI: 10.1186/s13073-020-00763-0.
View
9.
Stein S, Ramelli S, Grazioli A, Chung J, Singh M, Yinda C
. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022; 612(7941):758-763.
PMC: 9749650.
DOI: 10.1038/s41586-022-05542-y.
View
10.
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J
. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382(8):727-733.
PMC: 7092803.
DOI: 10.1056/NEJMoa2001017.
View
11.
Kim D, Lee J, Yang J, Kim J, Kim V, Chang H
. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020; 181(4):914-921.e10.
PMC: 7179501.
DOI: 10.1016/j.cell.2020.04.011.
View
12.
Ozdarendeli A, Ku S, Rochat S, Williams G, Senanayake S, Brian D
. Downstream sequences influence the choice between a naturally occurring noncanonical and closely positioned upstream canonical heptameric fusion motif during bovine coronavirus subgenomic mRNA synthesis. J Virol. 2001; 75(16):7362-74.
PMC: 114971.
DOI: 10.1128/JVI.75.16.7362-7374.2001.
View
13.
Spiteri G, Fielding J, Diercke M, Campese C, Enouf V, Gaymard A
. First cases of coronavirus disease 2019 (COVID-19) in the WHO European Region, 24 January to 21 February 2020. Euro Surveill. 2020; 25(9).
PMC: 7068164.
DOI: 10.2807/1560-7917.ES.2020.25.9.2000178.
View
14.
Nomburg J, Meyerson M, DeCaprio J
. Pervasive generation of non-canonical subgenomic RNAs by SARS-CoV-2. Genome Med. 2020; 12(1):108.
PMC: 7704119.
DOI: 10.1186/s13073-020-00802-w.
View
15.
van Marle G, Luytjes W, van der Most R, van der Straaten T, Spaan W
. Regulation of coronavirus mRNA transcription. J Virol. 1995; 69(12):7851-6.
PMC: 189729.
DOI: 10.1128/JVI.69.12.7851-7856.1995.
View
16.
Dong X, Penrice-Randal R, Goldswain H, Prince T, Randle N, Donovan-Banfield I
. Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers. Gigascience. 2022; 11.
PMC: 9154083.
DOI: 10.1093/gigascience/giac045.
View
17.
Chen S, Zhou Y, Chen Y, Gu J
. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018; 34(17):i884-i890.
PMC: 6129281.
DOI: 10.1093/bioinformatics/bty560.
View
18.
Long S
. SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses. 2021; 13(10).
PMC: 8539008.
DOI: 10.3390/v13101923.
View
19.
Telwatte S, Martin H, Marczak R, Fozouni P, Vallejo-Gracia A, Kumar G
. Novel RT-ddPCR assays for measuring the levels of subgenomic and genomic SARS-CoV-2 transcripts. Methods. 2021; 201:15-25.
PMC: 8105137.
DOI: 10.1016/j.ymeth.2021.04.011.
View
20.
Wang D, Jiang A, Feng J, Li G, Guo D, Sajid M
. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Mol Cell. 2021; 81(10):2135-2147.e5.
PMC: 7927579.
DOI: 10.1016/j.molcel.2021.02.036.
View