Universal Preprocessing of Single-cell Genomics Data
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
We describe a workflow for preprocessing a wide variety of single-cell genomics data types. The approach is based on parsing of machine-readable assay specifications to customize inputs for , which uses and to catalog reads, error correct barcodes, and count reads. The universal preprocessing method is implemented in the Python package that is available for download at: https://github.com/cellatlas/cellatlas/.
References
1.
Svensson V, Beltrame E, Pachter L
. A curated database reveals trends in single-cell transcriptomics. Database (Oxford). 2020; 2020.
PMC: 7698659.
DOI: 10.1093/database/baaa073.
View
2.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M
. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214.
PMC: 4481139.
DOI: 10.1016/j.cell.2015.05.002.
View
3.
Ma S, Zhang B, LaFave L, Earl A, Chiang Z, Hu Y
. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell. 2020; 183(4):1103-1116.e20.
PMC: 7669735.
DOI: 10.1016/j.cell.2020.09.056.
View
4.
Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay P, Swerdlow H
. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017; 14(9):865-868.
PMC: 5669064.
DOI: 10.1038/nmeth.4380.
View
5.
Battenberg K, Thomas Kelly S, Ras R, Hetherington N, Hayashi M, Minoda A
. A flexible cross-platform single-cell data processing pipeline. Nat Commun. 2022; 13(1):6847.
PMC: 9652453.
DOI: 10.1038/s41467-022-34681-z.
View