» Articles » PMID: 37735568

Deep Generative Modeling of Transcriptional Dynamics for RNA Velocity Analysis in Single Cells

Overview
Journal Nat Methods
Date 2023 Sep 22
PMID 37735568
Authors
Affiliations
Soon will be listed here.
Abstract

RNA velocity has been rapidly adopted to guide interpretation of transcriptional dynamics in snapshot single-cell data; however, current approaches for estimating RNA velocity lack effective strategies for quantifying uncertainty and determining the overall applicability to the system of interest. Here, we present veloVI (velocity variational inference), a deep generative modeling framework for estimating RNA velocity. veloVI learns a gene-specific dynamical model of RNA metabolism and provides a transcriptome-wide quantification of velocity uncertainty. We show that veloVI compares favorably to previous approaches with respect to goodness of fit, consistency across transcriptionally similar cells and stability across preprocessing pipelines for quantifying RNA abundance. Further, we demonstrate that veloVI's posterior velocity uncertainty can be used to assess whether velocity analysis is appropriate for a given dataset. Finally, we highlight veloVI as a flexible framework for modeling transcriptional dynamics by adapting the underlying dynamical model to use time-dependent transcription rates.

Citing Articles

The landscape of cell lineage tracing.

Feng Y, Liu G, Li H, Cheng L Sci China Life Sci. 2025; .

PMID: 40035969 DOI: 10.1007/s11427-024-2751-6.


Cell2fate infers RNA velocity modules to improve cell fate prediction.

Aivazidis A, Memi F, Kleshchevnikov V, Er S, Clarke B, Stegle O Nat Methods. 2025; .

PMID: 40032996 DOI: 10.1038/s41592-025-02608-3.


Single-cell and spatial transcriptomics reveal a potential role of ATF3 in brain metastasis of lung adenocarcinoma.

Xu C, Bao J, Pan D, Wei K, Gao Q, Lin W Transl Lung Cancer Res. 2025; 14(1):209-223.

PMID: 39958219 PMC: 11826269. DOI: 10.21037/tlcr-24-784.


GraphVelo allows for accurate inference of multimodal omics velocities and molecular mechanisms for single cells.

Chen Y, Zhang Y, Gan J, Ni K, Chen M, Bahar I Res Sq. 2025; .

PMID: 39877092 PMC: 11774466. DOI: 10.21203/rs.3.rs-5613372/v1.


Mapping cells through time and space with moscot.

Klein D, Palla G, Lange M, Klein M, Piran Z, Gander M Nature. 2025; 638(8052):1065-1075.

PMID: 39843746 PMC: 11864987. DOI: 10.1038/s41586-024-08453-2.


References
1.
Buenrostro J, Corces M, Lareau C, Wu B, Schep A, Aryee M . Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell. 2018; 173(6):1535-1548.e16. PMC: 5989727. DOI: 10.1016/j.cell.2018.03.074. View

2.
Haghverdi L, Buttner M, Wolf F, Buettner F, Theis F . Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016; 13(10):845-8. DOI: 10.1038/nmeth.3971. View

3.
Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Peer D . Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol. 2019; 37(4):451-460. PMC: 7549125. DOI: 10.1038/s41587-019-0068-4. View

4.
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M . The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4):381-386. PMC: 4122333. DOI: 10.1038/nbt.2859. View

5.
La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V . RNA velocity of single cells. Nature. 2018; 560(7719):494-498. PMC: 6130801. DOI: 10.1038/s41586-018-0414-6. View