» Articles » PMID: 37735143

Shape Anisotropy-Governed High-Performance Nanomagnetosol for In Vivo Magnetic Particle Imaging of Lungs

Abstract

Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has shown extensive lung manifestations in vulnerable individuals, putting lung imaging and monitoring at the forefront of early detection and treatment. Magnetic particle imaging (MPI) is an imaging modality, which can bring excellent contrast, sensitivity, and signal-to-noise ratios to lung imaging for the development of new theranostic approaches for respiratory diseases. Advances in MPI tracers would offer additional improvements and increase the potential for clinical translation of MPI. Here, a high-performance nanotracer based on shape anisotropy of magnetic nanoparticles is developed and its use in MPI imaging of the lung is demonstrated. Shape anisotropy proves to be a critical parameter for increasing signal intensity and resolution and exceeding those properties of conventional spherical nanoparticles. The 0D nanoparticles exhibit a 2-fold increase, while the 1D nanorods have a > 5-fold increase in signal intensity when compared to VivoTrax. Newly designed 1D nanorods displayed high signal intensities and excellent resolution in lung images. A spatiotemporal lung imaging study in mice revealed that this tracer offers new opportunities for monitoring disease and guiding intervention.

Citing Articles

Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Velazquez-Albino A, Imhoff E, Rinaldi-Ramos C Sci Adv. 2025; 11(2):eado7356.

PMID: 39772674 PMC: 11708890. DOI: 10.1126/sciadv.ado7356.


Pulsed MPI Relaxometry of Brownian and Néel Field-Dependent Relaxation in Superparamagnetic Magnetite Nanoparticles Confirm Theory and Simulations.

Saayujya C, Yousuf K, Hao Y, Hartley A, Yeo K, Swamynathan A Small. 2024; 20(44):e2403283.

PMID: 39108190 PMC: 11530308. DOI: 10.1002/smll.202403283.


Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance.

Velazquez-Albino A, Nozka A, Melnyk A, Good H, Rinaldi-Ramos C ACS Appl Nano Mater. 2024; 7(1):279-291.

PMID: 38606282 PMC: 11008578. DOI: 10.1021/acsanm.3c04442.


Machine Learning and Deep Learning Applications in Magnetic Particle Imaging.

Nigam S, Gjelaj E, Wang R, Wei G, Wang P J Magn Reson Imaging. 2024; 61(1):42-51.

PMID: 38358090 PMC: 11324856. DOI: 10.1002/jmri.29294.


The Application of Nanovaccines in Autoimmune Diseases.

Tang Y, Li L Int J Nanomedicine. 2024; 19:367-388.

PMID: 38229706 PMC: 10790641. DOI: 10.2147/IJN.S440612.

References
1.
Wang Q, Ma X, Liao H, Liang Z, Li F, Tian J . Artificially Engineered Cubic Iron Oxide Nanoparticle as a High-Performance Magnetic Particle Imaging Tracer for Stem Cell Tracking. ACS Nano. 2020; 14(2):2053-2062. DOI: 10.1021/acsnano.9b08660. View

2.
Tay Z, Savliwala S, Hensley D, Fung K, Colson C, Fellows B . Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging. Small Methods. 2021; 5(11):e2100796. PMC: 8837195. DOI: 10.1002/smtd.202100796. View

3.
Sempere L, Zaluzec E, Kenyon E, Kiupel M, Moore A . Automated Five-Color Multiplex Co-detection of MicroRNA and Protein Expression in Fixed Tissue Specimens. Methods Mol Biol. 2020; 2148:257-276. DOI: 10.1007/978-1-0716-0623-0_17. View

4.
Shasha C, Teeman E, Krishnan K, Szwargulski P, Knopp T, Moddel M . Discriminating nanoparticle core size using multi-contrast MPI. Phys Med Biol. 2019; 64(7):074001. DOI: 10.1088/1361-6560/ab0fc9. View

5.
Borgert J, Schmidt J, Schmale I, Rahmer J, Bontus C, Gleich B . Fundamentals and applications of magnetic particle imaging. J Cardiovasc Comput Tomogr. 2012; 6(3):149-53. DOI: 10.1016/j.jcct.2012.04.007. View