» Articles » PMID: 37724771

SILVR: Guided Diffusion for Molecule Generation

Overview
Date 2023 Sep 19
PMID 37724771
Authors
Affiliations
Soon will be listed here.
Abstract

Computationally generating new synthetically accessible compounds with high affinity and low toxicity is a great challenge in drug design. Machine learning models beyond conventional pharmacophoric methods have shown promise in the generation of novel small-molecule compounds but require significant tuning for a specific protein target. Here, we introduce a method called selective iterative latent variable refinement (SILVR) for conditioning an existing diffusion-based equivariant generative model without retraining. The model allows the generation of new molecules that fit into a binding site of a protein based on fragment hits. We use the SARS-CoV-2 main protease fragments from Diamond XChem that form part of the COVID Moonshot project as a reference dataset for conditioning the molecule generation. The SILVR rate controls the extent of conditioning, and we show that moderate SILVR rates make it possible to generate new molecules of similar shape to the original fragments, meaning that the new molecules fit the binding site without knowledge of the protein. We can also merge up to 3 fragments into a new molecule without affecting the quality of molecules generated by the underlying generative model. Our method is generalizable to any protein target with known fragments and any diffusion-based model for molecule generation.

Citing Articles

CoDNet: controlled diffusion network for structure-based drug design.

Kazi Md F, Haque S, Jahan E, Chakma L, Shermin T, Uddin Ahmed A Bioinform Adv. 2025; 5(1):vbaf031.

PMID: 40061873 PMC: 11886848. DOI: 10.1093/bioadv/vbaf031.


DrugDiff: small molecule diffusion model with flexible guidance towards molecular properties.

Oestreich M, Merdivan E, Lee M, Schultze J, Piraud M, Becker M J Cheminform. 2025; 17(1):23.

PMID: 40001177 PMC: 11854002. DOI: 10.1186/s13321-025-00965-x.


Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease.

Cree B, Bieniek M, Amin S, Kawamura A, Cole D Digit Discov. 2025; 4(2):438-450.

PMID: 39816163 PMC: 11726688. DOI: 10.1039/d4dd00343h.


MTGGF: A Metabolism Type-Aware Graph Generative Model for Molecular Metabolite Prediction.

Zhao P, Wei X, Wang Q, Wang H, Du B, Li J Interdiscip Sci. 2025; .

PMID: 39760923 DOI: 10.1007/s12539-024-00681-4.


Diffusion Models in De Novo Drug Design.

Alakhdar A, Poczos B, Washburn N J Chem Inf Model. 2024; 64(19):7238-7256.

PMID: 39322943 PMC: 11481093. DOI: 10.1021/acs.jcim.4c01107.

References
1.
Fu D, Meiler J . Predictive Power of Different Types of Experimental Restraints in Small Molecule Docking: A Review. J Chem Inf Model. 2017; 58(2):225-233. DOI: 10.1021/acs.jcim.7b00418. View

2.
Xie W, Wang F, Li Y, Lai L, Pei J . Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models. J Chem Inf Model. 2022; 62(10):2269-2279. DOI: 10.1021/acs.jcim.2c00042. View

3.
Mey A, Allen B, Bruce Macdonald H, Chodera J, Hahn D, Kuhn M . Best Practices for Alchemical Free Energy Calculations [Article v1.0]. Living J Comput Mol Sci. 2021; 2(1). PMC: 8388617. DOI: 10.33011/livecoms.2.1.18378. View

4.
Mey A, Juarez-Jimenez J, Hennessy A, Michel J . Blinded predictions of binding modes and energies of HSP90-α ligands for the 2015 D3R grand challenge. Bioorg Med Chem. 2016; 24(20):4890-4899. DOI: 10.1016/j.bmc.2016.07.044. View

5.
. Conformations and 3D pharmacophore searching. Drug Discov Today Technol. 2013; 7(4):e203-70. DOI: 10.1016/j.ddtec.2010.10.003. View