» Articles » PMID: 37713610

A Multi-scale Expression and Regulation Knowledge Base for Escherichia Coli

Overview
Specialty Biochemistry
Date 2023 Sep 15
PMID 37713610
Authors
Affiliations
Soon will be listed here.
Abstract

Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-sample, high-quality RNA-seq compendium consisting of data generated in our lab using a single experimental protocol. The compendium contains diverse growth conditions, including: 9 media; 39 supplements, including antibiotics; 42 heterologous proteins; and 76 gene knockouts. Using this resource, we elucidated global expression patterns. We used machine learning to extract 201 modules that account for 86% of known regulatory interactions, creating the regulatory component. With these modules, we identified two novel regulons and quantified systems-level regulatory responses. We also integrated 1675 curated, publicly-available transcriptomes into the resource. We demonstrated workflows for analyzing new data against this knowledge base via deconstruction of regulation during aerobic transition. This resource illuminates the E. coli transcriptome at scale and provides a blueprint for top-down transcriptomic analysis of non-model organisms.

Citing Articles

Micromix: web infrastructure for visualizing and remixing microbial 'omics data.

Hayward R, Ebbecke T, Fricke H, Nguyen V, Barquist L Gigascience. 2025; 14.

PMID: 39898450 PMC: 11788673. DOI: 10.1093/gigascience/giae120.


Escherichia coli growing under antimicrobial gallium nitrate stress reveals new processes of tolerance and toxicity.

Salazar-Aleman D, Turner R Sci Rep. 2025; 15(1):1389.

PMID: 39789098 PMC: 11718255. DOI: 10.1038/s41598-025-85772-y.


Revealing systematic changes in the transcriptome during the transition from exponential growth to stationary phase.

Lim H, Gao Y, Rychel K, Lamoureux C, Lou X, Palsson B mSystems. 2024; 10(1):e0131524.

PMID: 39714213 PMC: 11748552. DOI: 10.1128/msystems.01315-24.


Combined oxygen and glucose oscillations distinctly change the transcriptional and physiological state of Escherichia coli.

Bafna-Ruhrer J, Orth J, Sudarsan S Microb Biotechnol. 2024; 17(11):e70051.

PMID: 39548707 PMC: 11568247. DOI: 10.1111/1751-7915.70051.


Diversity of Transcriptional Regulatory Adaptation in E. coli.

Dalldorf C, Hefner Y, Szubin R, Johnsen J, Mohamed E, Li G Mol Biol Evol. 2024; 41(11).

PMID: 39531644 PMC: 11588850. DOI: 10.1093/molbev/msae240.


References
1.
Tan J, Sastry A, Fremming K, Bjorn S, Hoffmeyer A, Seo S . Independent component analysis of E. coli's transcriptome reveals the cellular processes that respond to heterologous gene expression. Metab Eng. 2020; 61:360-368. DOI: 10.1016/j.ymben.2020.07.002. View

2.
Choudhary K, Kleinmanns J, Decker K, Sastry A, Gao Y, Szubin R . Elucidation of Regulatory Modes for Five Two-Component Systems in Escherichia coli Reveals Novel Relationships. mSystems. 2020; 5(6). PMC: 7657598. DOI: 10.1128/mSystems.00980-20. View

3.
Reitzer L, Schneider B . Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev. 2001; 65(3):422-44, table of contents. PMC: 99035. DOI: 10.1128/MMBR.65.3.422-444.2001. View

4.
Potts A, Vakulskas C, Pannuri A, Yakhnin H, Babitzke P, Romeo T . Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat Commun. 2017; 8(1):1596. PMC: 5694010. DOI: 10.1038/s41467-017-01613-1. View

5.
DeLisa M, Wu C, Wang L, Valdes J, Bentley W . DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol. 2001; 183(18):5239-47. PMC: 95404. DOI: 10.1128/JB.183.18.5239-5247.2001. View