6.
Lever J
. PET and SPECT imaging of the opioid system: receptors, radioligands and avenues for drug discovery and development. Curr Pharm Des. 2007; 13(1):33-49.
DOI: 10.2174/138161207779313821.
View
7.
BLANE G
. Blockade of bradykinin-induced nociception in the rat as a test for analgesic drugs with particular reference to morphine antagonists. J Pharm Pharmacol. 1967; 19(6):367-73.
DOI: 10.1111/j.2042-7158.1967.tb09562.x.
View
8.
Guan B, Zhou N, Wu C, Li S, Chen Y, Debnath S
. Validation of SV2A-Targeted PET Imaging for Noninvasive Assessment of Neuroendocrine Differentiation in Prostate Cancer. Int J Mol Sci. 2021; 22(23).
PMC: 8657802.
DOI: 10.3390/ijms222313085.
View
9.
Sprenger T, Henriksen G, Valet M, Platzer S, Berthele A, Tolle T
. [Positron emission tomography in pain research. From the structure to the activity of the opiate receptor system]. Schmerz. 2007; 21(6):503-13.
DOI: 10.1007/s00482-007-0547-2.
View
10.
Jones A, Luthra S, Maziere B, Pike V, Loch C, Crouzel C
. Regional cerebral opioid receptor studies with [11C]diprenorphine in normal volunteers. J Neurosci Methods. 1988; 23(2):121-9.
DOI: 10.1016/0165-0270(88)90184-7.
View
11.
Li S, Zheng M, Naganawa M, Kim S, Gao H, Kapinos M
. Development and In Vivo Evaluation of a κ-Opioid Receptor Agonist as a PET Radiotracer with Superior Imaging Characteristics. J Nucl Med. 2019; 60(7):1023-1030.
PMC: 6604690.
DOI: 10.2967/jnumed.118.220517.
View
12.
Schreckenberger M, Klega A, Grunder G, Buchholz H, Scheurich A, Schirrmacher R
. Opioid receptor PET reveals the psychobiologic correlates of reward processing. J Nucl Med. 2008; 49(8):1257-61.
DOI: 10.2967/jnumed.108.050849.
View
13.
Henriksen G, Willoch F
. Imaging of opioid receptors in the central nervous system. Brain. 2007; 131(Pt 5):1171-96.
PMC: 2367693.
DOI: 10.1093/brain/awm255.
View
14.
Herz A, Hollt V
. [Receptor occupation and pharmacological activity as demonstrated on opiates (author's transl)]. Arzneimittelforschung. 1977; 27(96):1865-7.
View
15.
Mueller C, Klega A, Buchholz H, Rolke R, Magerl W, Schirrmacher R
. Basal opioid receptor binding is associated with differences in sensory perception in healthy human subjects: a [18F]diprenorphine PET study. Neuroimage. 2009; 49(1):731-7.
DOI: 10.1016/j.neuroimage.2009.08.033.
View
16.
Jacobson O, Kiesewetter D, Chen X
. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2014; 26(1):1-18.
PMC: 4306521.
DOI: 10.1021/bc500475e.
View
17.
Baumgartner U, Buchholz H, Bellosevich A, Magerl W, Siessmeier T, Rolke R
. High opiate receptor binding potential in the human lateral pain system. Neuroimage. 2005; 30(3):692-9.
DOI: 10.1016/j.neuroimage.2005.10.033.
View
18.
Hostetler E, Sanabria-Bohorquez S, Eng W, Joshi A, Patel S, Gibson R
. Evaluation of [¹⁸F]MK-0911, a positron emission tomography (PET) tracer for opioid receptor-like 1 (ORL1), in rhesus monkey and human. Neuroimage. 2012; 68:1-10.
DOI: 10.1016/j.neuroimage.2012.11.053.
View
19.
Rothman R, Bykov V, Reid A, De Costa B, Newman A, JACOBSON A
. A brief study of the selectivity of norbinaltorphimine, (-)-cyclofoxy, and (+)-cyclofoxy among opioid receptor subtypes in vitro. Neuropeptides. 1988; 12(3):181-7.
DOI: 10.1016/0143-4179(88)90052-2.
View
20.
Szucs E, Buki A, Kekesi G, Horvath G, Benyhe S
. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia. Neurosci Lett. 2016; 619:29-33.
DOI: 10.1016/j.neulet.2016.02.060.
View