6.
Ruiz P, Moron B, Becker H, Lang S, Atrott K, Spalinger M
. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut. 2016; 66(7):1216-1224.
PMC: 5530483.
DOI: 10.1136/gutjnl-2015-310297.
View
7.
Spitzer N, Patterson K, Kipps D
. Akt and MAPK/ERK signaling regulate neurite extension in adult neural progenitor cells but do not directly mediate disruption of cytoskeletal structure and neurite dynamics by low-level silver nanoparticles. Toxicol In Vitro. 2021; 74:105151.
DOI: 10.1016/j.tiv.2021.105151.
View
8.
Benoit Y, Pare F, Francoeur C, Jean D, Tremblay E, Boudreau F
. Cooperation between HNF-1alpha, Cdx2, and GATA-4 in initiating an enterocytic differentiation program in a normal human intestinal epithelial progenitor cell line. Am J Physiol Gastrointest Liver Physiol. 2010; 298(4):G504-17.
PMC: 2907224.
DOI: 10.1152/ajpgi.00265.2009.
View
9.
Mauvezin C, Neufeld T
. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 2015; 11(8):1437-8.
PMC: 4590655.
DOI: 10.1080/15548627.2015.1066957.
View
10.
Tumbarello D, Waxse B, Arden S, Bright N, Kendrick-Jones J, Buss F
. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol. 2012; 14(10):1024-35.
PMC: 3472162.
DOI: 10.1038/ncb2589.
View
11.
Reggiori F, Ungermann C
. Autophagosome Maturation and Fusion. J Mol Biol. 2017; 429(4):486-496.
DOI: 10.1016/j.jmb.2017.01.002.
View
12.
Lerner A, Arleevskaya M, Schmiedl A, Matthias T
. Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes?. Front Microbiol. 2017; 8:1392.
PMC: 5539691.
DOI: 10.3389/fmicb.2017.01392.
View
13.
Groulx J, Khalfaoui T, Benoit Y, Bernatchez G, Carrier J, Basora N
. Autophagy is active in normal colon mucosa. Autophagy. 2012; 8(6):893-902.
PMC: 3427255.
DOI: 10.4161/auto.19738.
View
14.
Vitulo M, Gnodi E, Meneveri R, Barisani D
. Interactions between Nanoparticles and Intestine. Int J Mol Sci. 2022; 23(8).
PMC: 9024817.
DOI: 10.3390/ijms23084339.
View
15.
Di Silvio D, Rigby N, Bajka B, Mackie A, Bombelli F
. Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake. Int J Biochem Cell Biol. 2015; 75:212-22.
DOI: 10.1016/j.biocel.2015.10.019.
View
16.
Athinarayanan J, Alshatwi A, Periasamy V, Al-Warthan A
. Identification of nanoscale ingredients in commercial food products and their induction of mitochondrially mediated cytotoxic effects on human mesenchymal stem cells. J Food Sci. 2015; 80(2):N459-64.
DOI: 10.1111/1750-3841.12760.
View
17.
Barone M, Zanzi D, Maglio M, Nanayakkara M, Santagata S, Lania G
. Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking. PLoS One. 2011; 6(2):e17039.
PMC: 3045409.
DOI: 10.1371/journal.pone.0017039.
View
18.
Marucco A, Prono M, Beal D, Alasonati E, Fisicaro P, Bergamaschi E
. Biotransformation of Food-Grade and Nanometric TiO in the Oral-Gastro-Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. Nanomaterials (Basel). 2020; 10(11).
PMC: 7692287.
DOI: 10.3390/nano10112132.
View
19.
Chen Y, Yang T, Chen S, Qi S, Zhang Z, Xu Y
. Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells. J Biochem Mol Toxicol. 2020; 34(5):e22474.
DOI: 10.1002/jbt.22474.
View
20.
Mancuso C, Barisani D
. Food additives can act as triggering factors in celiac disease: Current knowledge based on a critical review of the literature. World J Clin Cases. 2019; 7(8):917-927.
PMC: 6509268.
DOI: 10.12998/wjcc.v7.i8.917.
View