» Articles » PMID: 37673863

Direct Observation of TRNA-chaperoned Folding of a Dynamic MRNA Ensemble

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Sep 6
PMID 37673863
Authors
Affiliations
Soon will be listed here.
Abstract

T-box riboswitches are multi-domain noncoding RNAs that surveil individual amino acid availabilities in most Gram-positive bacteria. T-boxes directly bind specific tRNAs, query their aminoacylation status to detect starvation, and feedback control the transcription or translation of downstream amino-acid metabolic genes. Most T-boxes rapidly recruit their cognate tRNA ligands through an intricate three-way stem I-stem II-tRNA interaction, whose establishment is not understood. Using single-molecule FRET, SAXS, and time-resolved fluorescence, we find that the free T-box RNA assumes a broad distribution of open, semi-open, and closed conformations that only slowly interconvert. tRNA directly binds all three conformers with distinct kinetics, triggers nearly instantaneous collapses of the open conformations, and returns the T-box RNA to their pre-binding conformations upon dissociation. This scissors-like dynamic behavior is enabled by a hinge-like pseudoknot domain which poises the T-box for rapid tRNA-induced domain closure. This study reveals tRNA-chaperoned folding of flexible, multi-domain mRNAs through a Venus flytrap-like mechanism.

Citing Articles

RNA folding kinetics control riboswitch sensitivity in vivo.

Bushhouse D, Fu J, Lucks J Nat Commun. 2025; 16(1):953.

PMID: 39843437 PMC: 11754884. DOI: 10.1038/s41467-024-55601-3.


Translational T-box riboswitches bind tRNA by modulating conformational flexibility.

Campos-Chavez E, Paul S, Zhou Z, Alonso D, Verma A, Fei J Nat Commun. 2024; 15(1):6592.

PMID: 39097611 PMC: 11297988. DOI: 10.1038/s41467-024-50885-x.


Structural basis of NEAT1 lncRNA maturation and menRNA instability.

Skeparnias I, Zhang J Nat Struct Mol Biol. 2024; 31(11):1650-1654.

PMID: 39026030 DOI: 10.1038/s41594-024-01361-z.


Structural idiosyncrasies of glycyl T-box riboswitches among pathogenic bacteria.

Giarimoglou N, Kouvela A, Zhang J, Stamatopoulou V, Stathopoulos C RNA. 2024; 30(10):1328-1344.

PMID: 38981655 PMC: 11404447. DOI: 10.1261/rna.080071.124.


RNA folding kinetics control riboswitch sensitivity in vivo.

Bushhouse D, Fu J, Lucks J bioRxiv. 2024; .

PMID: 38585885 PMC: 10996619. DOI: 10.1101/2024.03.29.587317.


References
1.
Aitken C, Marshall R, Puglisi J . An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J. 2007; 94(5):1826-35. PMC: 2242739. DOI: 10.1529/biophysj.107.117689. View

2.
Yoo J, Louis J, Gopich I, Chung H . Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding. J Phys Chem B. 2018; 122(49):11702-11720. PMC: 6458097. DOI: 10.1021/acs.jpcb.8b07768. View

3.
Peselis A, Serganov A . Structure and function of pseudoknots involved in gene expression control. Wiley Interdiscip Rev RNA. 2014; 5(6):803-22. PMC: 4664075. DOI: 10.1002/wrna.1247. View

4.
Rau M, Hall K . 2-Aminopurine Fluorescence as a Probe of Local RNA Structure and Dynamics and Global Folding. Methods Enzymol. 2015; 558:99-124. DOI: 10.1016/bs.mie.2015.01.006. View

5.
Brown J, Kharytonchyk S, Chaudry I, Iyer A, Carter H, Becker G . Structural basis for transcriptional start site control of HIV-1 RNA fate. Science. 2020; 368(6489):413-417. PMC: 7351118. DOI: 10.1126/science.aaz7959. View