» Articles » PMID: 37673071

Recapitulation of Patient-specific 3D Chromatin Conformation Using Machine Learning

Overview
Specialty Cell Biology
Date 2023 Sep 6
PMID 37673071
Authors
Affiliations
Soon will be listed here.
Abstract

Regulatory networks containing enhancer-gene edges define cellular states. Multiple efforts have revealed these networks for reference tissues and cell lines by integrating multi-omics data. However, the methods developed cannot be applied for large patient cohorts due to the infeasibility of chromatin immunoprecipitation sequencing (ChIP-seq) for limited biopsy material. We trained machine-learning models using chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) data that can predict connections using only assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq data as input, which can be generated from biopsies. Our method overcomes limitations of correlation-based approaches that cannot distinguish between distinct target genes of given enhancers or between active vs. poised states in different samples, a hallmark of network rewiring in cancer. Application of our model on 371 samples across 22 cancer types revealed 1,780 enhancer-gene connections for 602 cancer genes. Using CRISPR interference (CRISPRi), we validated enhancers predicted to regulate ESR1 in estrogen receptor (ER)+ breast cancer and A1CF in liver hepatocellular carcinoma.

Citing Articles

APOBEC-1 Complementation Factor: From RNA Binding to Cancer.

Wang L, Cheng Q Cancer Control. 2024; 31:10732748241284952.

PMID: 39334524 PMC: 11439182. DOI: 10.1177/10732748241284952.


Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data.

Forbes A, Xu D, Cohen S, Pancholi P, Khurana E Cell Syst. 2024; 15(9):824-837.e6.

PMID: 39236711 PMC: 11415227. DOI: 10.1016/j.cels.2024.08.004.


A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations.

Saldana-Guerrero I, Montano-Gutierrez L, Boswell K, Hafemeister C, Poon E, Shaw L Nat Commun. 2024; 15(1):3745.

PMID: 38702304 PMC: 11068915. DOI: 10.1038/s41467-024-47945-7.


Predicting patient-specific enhancer-promoter interactions.

Baur B, Roy S Cell Rep Methods. 2023; 3(9):100594.

PMID: 37751694 PMC: 10545932. DOI: 10.1016/j.crmeth.2023.100594.

References
1.
Ye T, Feng J, Wan X, Xie D, Liu J . Double Agent: Gene with Both Oncogenic and Tumor-Suppressor Functions in Breast Cancer. Cancer Manag Res. 2020; 12:3891-3902. PMC: 7259446. DOI: 10.2147/CMAR.S243748. View

2.
Sanjana N, Shalem O, Zhang F . Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014; 11(8):783-784. PMC: 4486245. DOI: 10.1038/nmeth.3047. View

3.
Osisami M, Keller E . SPDEF: a molecular switch for E-cadherin expression that promotes prostate cancer metastasis. Asian J Androl. 2013; 15(5):584-5. PMC: 3881650. DOI: 10.1038/aja.2013.64. View

4.
Rheinbay E, Nielsen M, Abascal F, Wala J, Shapira O, Tiao G . Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature. 2020; 578(7793):102-111. PMC: 7054214. DOI: 10.1038/s41586-020-1965-x. View

5.
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V . STAT5A and STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers (Basel). 2019; 11(11). PMC: 6895831. DOI: 10.3390/cancers11111726. View