» Articles » PMID: 37666834

Search for Ambient Superconductivity in the Lu-N-H System

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Sep 4
PMID 37666834
Authors
Affiliations
Soon will be listed here.
Abstract

Motivated by the recent report of room-temperature superconductivity at near-ambient pressure in N-doped lutetium hydride, we performed a comprehensive, detailed study of the phase diagram of the Lu-N-H system, looking for superconducting phases. We combined ab initio crystal structure prediction with ephemeral data-derived interatomic potentials to sample over 200,000 different structures. Out of the more than 150 structures predicted to be metastable within ~50 meV from the convex hull we identify 52 viable candidates for conventional superconductivity, for which we computed their superconducting properties from Density Functional Perturbation Theory. Although for some of these structures we do predict a finite superconducting T, none is even remotely compatible with room-temperature superconductivity as reported by Dasenbrock et al. Our work joins the broader community effort that has followed the report of near-ambient superconductivity, confirming beyond reasonable doubt that no conventional mechanism can explain the reported T in Lu-N-H.

Citing Articles

A generative model for inorganic materials design.

Zeni C, Pinsler R, Zugner D, Fowler A, Horton M, Fu X Nature. 2025; .

PMID: 39821164 DOI: 10.1038/s41586-025-08628-5.


Possible Superconductivity Transition in Nitrogen-Doped Lutetium Hydride Observed at Megabar Pressure.

Zhao X, Huang Y, Ma S, Song H, Cao Y, Jiang H Adv Sci (Weinh). 2024; 12(3):e2409092.

PMID: 39601143 PMC: 11744718. DOI: 10.1002/advs.202409092.


Designing multicomponent hydrides with potential high T superconductivity.

Denchfield A, Park H, Hemley R Proc Natl Acad Sci U S A. 2024; 121(45):e2413096121.

PMID: 39485794 PMC: 11551333. DOI: 10.1073/pnas.2413096121.


Molecular hydrogen in the N-doped LuH system as a possible path to superconductivity.

Tresca C, Forcella P, Angeletti A, Ranalli L, Franchini C, Reticcioli M Nat Commun. 2024; 15(1):7283.

PMID: 39179540 PMC: 11343858. DOI: 10.1038/s41467-024-51348-z.


Origin of the near-room temperature resistance transition in lutetium with H/N gas mixture under high pressure.

Peng D, Zeng Q, Lan F, Xing Z, Zeng Z, Ke X Natl Sci Rev. 2024; 11(7):nwad337.

PMID: 38883294 PMC: 11173200. DOI: 10.1093/nsr/nwad337.


References
1.
Pickard C, Needs R . High-pressure phases of silane. Phys Rev Lett. 2006; 97(4):045504. DOI: 10.1103/PhysRevLett.97.045504. View

2.
Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M . Evidence for an excitonic insulator phase in 1T-TiSe2. Phys Rev Lett. 2007; 99(14):146403. DOI: 10.1103/PhysRevLett.99.146403. View

3.
Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M . High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH_{6} up to 215 K at a Pressure of 172 GPa. Phys Rev Lett. 2022; 128(16):167001. DOI: 10.1103/PhysRevLett.128.167001. View

4.
Drozdov A, Eremets M, Troyan I, Ksenofontov V, Shylin S . Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 2015; 525(7567):73-6. DOI: 10.1038/nature14964. View

5.
Dasenbrock-Gammon N, Snider E, McBride R, Pasan H, Durkee D, Khalvashi-Sutter N . Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature. 2023; 615(7951):244-250. DOI: 10.1038/s41586-023-05742-0. View