» Articles » PMID: 37659413

The Virus-induced Cyclic Dinucleotide 2'3'-c-di-GMP Mediates STING-dependent Antiviral Immunity in Drosophila

Abstract

In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.

Citing Articles

Regulation of cGAS-STING signalling and its diversity of cellular outcomes.

Zhang Z, Zhang C Nat Rev Immunol. 2025; .

PMID: 39774812 DOI: 10.1038/s41577-024-01112-7.


Cytosolic delivery of innate immune agonists.

Bharadwaj R, Jaiswal S, Silverman N Trends Immunol. 2024; 45(12):1001-1014.

PMID: 39567309 PMC: 11624987. DOI: 10.1016/j.it.2024.10.007.


Tissue specific innate immune responses impact viral infection in Drosophila.

Segrist E, Miller S, Gold B, Li Y, Cherry S PLoS Pathog. 2024; 20(11):e1012672.

PMID: 39495785 PMC: 11563389. DOI: 10.1371/journal.ppat.1012672.


Animal and bacterial viruses share conserved mechanisms of immune evasion.

Hobbs S, Nomburg J, Doudna J, Kranzusch P Cell. 2024; 187(20):5530-5539.e8.

PMID: 39197447 PMC: 11455605. DOI: 10.1016/j.cell.2024.07.057.


The immune modules conserved across the tree of life: Towards a definition of ancestral immunity.

Bernheim A, Cury J, Poirier E PLoS Biol. 2024; 22(7):e3002717.

PMID: 39008452 PMC: 11249213. DOI: 10.1371/journal.pbio.3002717.


References
1.
Hobbs S, Wein T, Lu A, Morehouse B, Schnabel J, Leavitt A . Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature. 2022; 605(7910):522-526. PMC: 9117128. DOI: 10.1038/s41586-022-04716-y. View

2.
Love M, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. PMC: 4302049. DOI: 10.1186/s13059-014-0550-8. View

3.
McFarland A, Luo S, Ahmed-Qadri F, Zuck M, Thayer E, Goo Y . Sensing of Bacterial Cyclic Dinucleotides by the Oxidoreductase RECON Promotes NF-κB Activation and Shapes a Proinflammatory Antibacterial State. Immunity. 2017; 46(3):433-445. PMC: 5404390. DOI: 10.1016/j.immuni.2017.02.014. View

4.
Letunic I, Bork P . Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021; 49(W1):W293-W296. PMC: 8265157. DOI: 10.1093/nar/gkab301. View

5.
Gobert V, Gottar M, Matskevich A, Rutschmann S, Royet J, Belvin M . Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science. 2003; 302(5653):2126-30. DOI: 10.1126/science.1085432. View