6.
Valle J, Toledo-Arana A, Berasain C, Ghigo J, Amorena B, Penades J
. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol. 2003; 48(4):1075-87.
DOI: 10.1046/j.1365-2958.2003.03493.x.
View
7.
Flemming H, Wingender J, Szewzyk U, Steinberg P, Rice S, Kjelleberg S
. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016; 14(9):563-75.
DOI: 10.1038/nrmicro.2016.94.
View
8.
Villa F, Cappitelli F, Cortesi P, Kunova A
. Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Front Microbiol. 2017; 8:654.
PMC: 5390024.
DOI: 10.3389/fmicb.2017.00654.
View
9.
Patridge E, Ferry J
. WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase. J Bacteriol. 2006; 188(10):3498-506.
PMC: 1482846.
DOI: 10.1128/JB.188.10.3498-3506.2006.
View
10.
Villa F, Remelli W, Forlani F, Gambino M, Landini P, Cappitelli F
. Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii. Biofouling. 2012; 28(8):823-33.
DOI: 10.1080/08927014.2012.715285.
View
11.
Annunziato G
. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int J Mol Sci. 2019; 20(23).
PMC: 6928725.
DOI: 10.3390/ijms20235844.
View
12.
Gambino M, Cappitelli F
. Mini-review: Biofilm responses to oxidative stress. Biofouling. 2016; 32(2):167-78.
DOI: 10.1080/08927014.2015.1134515.
View
13.
Peng Q, Tang X, Dong W, Sun N, Yuan W
. A Review of Biofilm Formation of and Its Regulation Mechanism. Antibiotics (Basel). 2023; 12(1).
PMC: 9854888.
DOI: 10.3390/antibiotics12010012.
View
14.
Irwin J, Tang K, Young J, Dandarchuluun C, Wong B, Khurelbaatar M
. ZINC20-A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J Chem Inf Model. 2020; 60(12):6065-6073.
PMC: 8284596.
DOI: 10.1021/acs.jcim.0c00675.
View
15.
Bellenberg S, Huynh D, Poetsch A, Sand W, Vera M
. Proteomics Reveal Enhanced Oxidative Stress Responses and Metabolic Adaptation in Biofilm Cells on Pyrite. Front Microbiol. 2019; 10:592.
PMC: 6450195.
DOI: 10.3389/fmicb.2019.00592.
View
16.
Villa F, Albanese D, Giussani B, Stewart P, Daffonchio D, Cappitelli F
. Hindering biofilm formation with zosteric acid. Biofouling. 2010; 26(6):739-52.
DOI: 10.1080/08927014.2010.511197.
View
17.
Lammi C, Sgrignani J, Roda G, Arnoldi A, Grazioso G
. Inhibition of PCSK9/LDLR Protein-Protein Interaction by Computationally Designed T9 Lupin Peptide. ACS Med Chem Lett. 2019; 10(4):425-430.
PMC: 6466515.
DOI: 10.1021/acsmedchemlett.8b00464.
View
18.
Akcelik N, Akcelik M
. What makes another life possible in bacteria? Global regulators as architects of bacterial biofilms. World J Microbiol Biotechnol. 2022; 38(12):236.
DOI: 10.1007/s11274-022-03376-4.
View
19.
Lammi C, Sgrignani J, Arnoldi A, Lesma G, Spatti C, Silvani A
. Computationally Driven Structure Optimization, Synthesis, and Biological Evaluation of Imidazole-Based Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Inhibitors. J Med Chem. 2019; 62(13):6163-6174.
DOI: 10.1021/acs.jmedchem.9b00402.
View
20.
Degtjarik O, Brynda J, Ettrichova O, Kuty M, Sinha D, Kuta Smatanova I
. Quantum Calculations Indicate Effective Electron Transfer between FMN and Benzoquinone in a New Crystal Structure of Escherichia coli WrbA. J Phys Chem B. 2016; 120(22):4867-77.
DOI: 10.1021/acs.jpcb.5b11958.
View