6.
Zouch W, Sagga D, Echtioui A, Khemakhem R, Ghorbel M, Mhiri C
. Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models. Ann Biomed Eng. 2022; 50(7):825-835.
PMC: 9005164.
DOI: 10.1007/s10439-022-02958-5.
View
7.
Loey M, Manogaran G, Khalifa N
. A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images. Neural Comput Appl. 2020; :1-13.
PMC: 7586204.
DOI: 10.1007/s00521-020-05437-x.
View
8.
Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X
. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell. 2020; 181(6):1423-1433.e11.
PMC: 7196900.
DOI: 10.1016/j.cell.2020.04.045.
View
9.
Kassania S, Kassanib P, Wesolowskic M, Schneidera K, Detersa R
. Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning Based Approach. Biocybern Biomed Eng. 2021; 41(3):867-879.
PMC: 8179118.
DOI: 10.1016/j.bbe.2021.05.013.
View
10.
Kogilavani S, Prabhu J, Sandhiya R, Sandeep Kumar M, Subramaniam U, Karthick A
. COVID-19 Detection Based on Lung Ct Scan Using Deep Learning Techniques. Comput Math Methods Med. 2022; 2022:7672196.
PMC: 8805449.
DOI: 10.1155/2022/7672196.
View
11.
Silva P, Luz E, Silva G, Moreira G, Silva R, Lucio D
. COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis. Inform Med Unlocked. 2020; 20:100427.
PMC: 7487744.
DOI: 10.1016/j.imu.2020.100427.
View
12.
Ortiz A, Trivedi A, Desbiens J, Blazes M, Robinson C, Gupta S
. Effective deep learning approaches for predicting COVID-19 outcomes from chest computed tomography volumes. Sci Rep. 2022; 12(1):1716.
PMC: 8810911.
DOI: 10.1038/s41598-022-05532-0.
View
13.
Koo H, Lim S, Choe J, Choi S, Sung H, Do K
. Radiographic and CT Features of Viral Pneumonia. Radiographics. 2018; 38(3):719-739.
DOI: 10.1148/rg.2018170048.
View
14.
Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z
. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19. IEEE Rev Biomed Eng. 2020; 14:4-15.
DOI: 10.1109/RBME.2020.2987975.
View
15.
Misztal K, Pocha A, Durak-Kozica M, Wator M, Kubica-Misztal A, Hartel M
. The importance of standardisation - COVID-19 CT & Radiograph Image Data Stock for deep learning purpose. Comput Biol Med. 2020; 127:104092.
PMC: 7591316.
DOI: 10.1016/j.compbiomed.2020.104092.
View
16.
Chaibub Neto E, Pratap A, Perumal T, Tummalacherla M, Snyder P, Bot B
. Detecting the impact of subject characteristics on machine learning-based diagnostic applications. NPJ Digit Med. 2019; 2:99.
PMC: 6789029.
DOI: 10.1038/s41746-019-0178-x.
View
17.
. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5(4):536-544.
PMC: 7095448.
DOI: 10.1038/s41564-020-0695-z.
View
18.
Rahman T, Khandakar A, Qiblawey Y, Tahir A, Kiranyaz S, Abul Kashem S
. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biol Med. 2021; 132:104319.
PMC: 7946571.
DOI: 10.1016/j.compbiomed.2021.104319.
View
19.
Chouat I, Echtioui A, Khemakhem R, Zouch W, Ghorbel M, Ben Hamida A
. COVID-19 detection in CT and CXR images using deep learning models. Biogerontology. 2022; 23(1):65-84.
PMC: 8782709.
DOI: 10.1007/s10522-021-09946-7.
View
20.
Pijls B, Jolani S, Atherley A, Derckx R, Dijkstra J, Franssen G
. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open. 2021; 11(1):e044640.
PMC: 7802392.
DOI: 10.1136/bmjopen-2020-044640.
View