» Articles » PMID: 37615518

Bio-Inspired Polyanionic Electrolytes for Highly Stable Zinc-Ion Batteries

Abstract

For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO , the affinity of Zn ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114 V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10 mg/cm ).

Citing Articles

Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries.

Hu X, Dong H, Gao N, Wang T, He H, Gao X Nat Commun. 2025; 16(1):2316.

PMID: 40057473 PMC: 11890744. DOI: 10.1038/s41467-025-57666-0.


Biomimetic and biodegradable separator with high modulus and large ionic conductivity enables dendrite-free zinc-ion batteries.

Ma H, Chen H, Chen M, Li A, Han X, Ma D Nat Commun. 2025; 16(1):1014.

PMID: 39856065 PMC: 11760366. DOI: 10.1038/s41467-025-56325-8.


Highly Reversible Zn Anode Design Through Oriented ZnO(002) Facets.

Yang C, Woottapanit P, Geng S, Lolupiman K, Zhang X, Zeng Z Adv Mater. 2024; 36(49):e2408908.

PMID: 39428920 PMC: 11619232. DOI: 10.1002/adma.202408908.


Sodium compensation: a critical technology for transforming batteries from sodium-starved to sodium-rich systems.

Zhu B, Zhang W, Jiang Z, Chen J, Li Z, Zheng J Chem Sci. 2024; .

PMID: 39170725 PMC: 11333941. DOI: 10.1039/d4sc03995e.


Selectively "size-excluding" water molecules to enable a highly reversible zinc metal anode.

Shen X, Chen W, Wang H, Zhang L, Hao B, Zhu C Chem Sci. 2024; 15(26):10182-10192.

PMID: 38966361 PMC: 11220579. DOI: 10.1039/d3sc06934f.


References
1.
Dong H, Hu X, Liu R, Ouyang M, He H, Wang T . Bio-Inspired Polyanionic Electrolytes for Highly Stable Zinc-Ion Batteries. Angew Chem Int Ed Engl. 2023; 62(41):e202311268. PMC: 10962557. DOI: 10.1002/anie.202311268. View

2.
Zhao Z, Zhou X, Zhang B, Huang F, Wang Y, Ma Z . Regulating Steric Hindrance of Porous Organic Polymers in Composite Solid-State Electrolytes to Induce the Formation of LiF-Rich SEI in Li-Ion Batteries. Angew Chem Int Ed Engl. 2023; 62(39):e202308738. DOI: 10.1002/anie.202308738. View

3.
Zhang Q, Luan J, Tang Y, Ji X, Wang H . Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl. 2020; 59(32):13180-13191. DOI: 10.1002/anie.202000162. View

4.
Dong N, Zhang F, Pan H . Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem Sci. 2022; 13(28):8243-8252. PMC: 9297528. DOI: 10.1039/d2sc01818g. View

5.
Schmid T, Messmer A, Yeo B, Zhang W, Zenobi R . Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Anal Bioanal Chem. 2008; 391(5):1907-16. DOI: 10.1007/s00216-008-2101-1. View