» Articles » PMID: 37601072

SNPs in Cytochrome P450 Genes Decide on the Fate of Individuals with Genetic Predisposition to Parkinson's Disease

Overview
Journal Front Pharmacol
Date 2023 Aug 21
PMID 37601072
Authors
Affiliations
Soon will be listed here.
Abstract

Parkinson's disease (PD) is one of the most frequent neurological diseases affecting millions of people worldwide. While the majority of PD cases are of unknown origin (idiopathic), about 5%-10% are familial and linked to mutations in different known genes. However, there are also people with a genetic predisposition to PD who do not develop the disease. To elucidate factors leading to the manifestation of PD we compared the occurrence of single nucleotide polymorphisms (SNPs) in various cytochrome P450 (P450) genes in people with a genetic predisposition and suffering from PD (GPD) to that of people, who are genetically predisposed, but show no symptoms of the disease (GUN). We used the PPMI (Parkinson's Progression Markers Initiative) database and the gene sequences of all 57 P450s as well as their three redox partners. Corresponding odds ratios (OR) and confidence intervals (CI) were calculated to assess the incidence of the various SNPs in the two groups of individuals and consequently their relation to PD. We identified for the first time SNPs that are significantly (up to 10fold!) over- or under-represented in GPD patients compared to GUN. SNPs with OR > 5 were found in 10 P450s being involved in eicosanoid, vitamin A and D metabolism as well as cholesterol degradation pointing to an important role of endogenous factors for the manifestation of PD clinical symptoms. Moreover, 12 P450s belonging to all P450 substrate classes as well as POR have SNPs that are significantly under-represented (OR < 0.2) in GPD compared to GUN, indicating a protective role of those SNPs and the corresponding P450s regarding disease advancement. To the best of our knowledge our data for the first time demonstrate an association between known PD predisposition genes and SNPs in other genes, shown here for different P450 genes and for their redox partner POR, which promote the manifestation of the disease in familial PD. Our results thus shed light onto the pathogenesis of PD, especially the switch from GUN to GPD and might further help to advance novel strategies for preventing the development or progression of the disease.

Citing Articles

Park7 deletion leads to sex-specific transcriptome changes involving NRF2-CYP1B1 axis in mouse midbrain astrocytes.

Helgueta S, Heurtaux T, Sciortino A, Gui Y, Ohnmacht J, Mencke P NPJ Parkinsons Dis. 2025; 11(1):8.

PMID: 39755720 PMC: 11700157. DOI: 10.1038/s41531-024-00851-7.


SNPs in cytochromes P450 catalyzing cholesterol degradation in brain are associated with Parkinson's disease.

Petkova-Kirova P, Kolchina A, Baas S, Wagenpfeil G, Unger M, Schulze-Hentrich J Front Pharmacol. 2024; 15:1477009.

PMID: 39403150 PMC: 11472000. DOI: 10.3389/fphar.2024.1477009.


Exploring the Regulation of Cytochrome P450 in SH-SY5Y Cells: Implications for the Onset of Neurodegenerative Diseases.

Pifferi A, Chiaino E, Fernandez-Abascal J, Bannon A, Davey G, Frosini M Int J Mol Sci. 2024; 25(13).

PMID: 39000543 PMC: 11242626. DOI: 10.3390/ijms25137439.

References
1.
Tsai M, Weng C, Yu N, Liou D, Kuo F, Huang M . Enhanced prostacyclin synthesis by adenoviral gene transfer reduced glial activation and ameliorated dopaminergic dysfunction in hemiparkinsonian rats. Oxid Med Cell Longev. 2013; 2013:649809. PMC: 3649752. DOI: 10.1155/2013/649809. View

2.
Li Z, Wang Z, Lee M, Zenkel M, Peh E, Ozaki M . Association of Rare CYP39A1 Variants With Exfoliation Syndrome Involving the Anterior Chamber of the Eye. JAMA. 2021; 325(8):753-764. PMC: 7903258. DOI: 10.1001/jama.2021.0507. View

3.
Stark K, Wu Z, Bartleson C, Guengerich F . mRNA distribution and heterologous expression of orphan cytochrome P450 20A1. Drug Metab Dispos. 2008; 36(9):1930-7. PMC: 4694639. DOI: 10.1124/dmd.108.022020. View

4.
Prestsaeter S, Koht J, Lamari F, Tallaksen C, Hoven S, Vigeland M . Elevated hydroxycholesterols in Norwegian patients with hereditary spastic paraplegia SPG5. J Neurol Sci. 2020; 419:117211. DOI: 10.1016/j.jns.2020.117211. View

5.
Lemaire B, Kubota A, OMeara C, Lamb D, Tanguay R, Goldstone J . Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders. Toxicol Appl Pharmacol. 2016; 296:73-84. PMC: 4807407. DOI: 10.1016/j.taap.2016.02.001. View