» Articles » PMID: 37596652

Convolutional Neural Network-based Vocal Cord Tumor Classification Technique for Home-based Self-prescreening Purpose

Overview
Publisher Biomed Central
Date 2023 Aug 18
PMID 37596652
Authors
Affiliations
Soon will be listed here.
Abstract

Background: In this study, we proposed a deep learning technique that can simultaneously detect suspicious positions of benign vocal cord tumors in laparoscopic images and classify the types of tumors into cysts, granulomas, leukoplakia, nodules and polyps. This technique is useful for simplified home-based self-prescreening purposes to detect the generation of tumors around the vocal cord early in the benign stage.

Results: We implemented four convolutional neural network (CNN) models (two Mask R-CNNs, Yolo V4, and a single-shot detector) that were trained, validated and tested using 2183 laryngoscopic images. The experimental results demonstrated that among the four applied models, Yolo V4 showed the highest F1-score for all tumor types (0.7664, cyst; 0.9875, granuloma; 0.8214, leukoplakia; 0.8119, nodule; and 0.8271, polyp). The model with the lowest false-negative rate was different for each tumor type (Yolo V4 for cysts/granulomas and Mask R-CNN for leukoplakia/nodules/polyps). In addition, the embedded-operated Yolo V4 model showed an approximately equivalent F1-score (0.8529) to that of the computer-operated Yolo-4 model (0.8683).

Conclusions: Based on these results, we conclude that the proposed deep-learning-based home screening techniques have the potential to aid in the early detection of tumors around the vocal cord and can improve the long-term survival of patients with vocal cord tumors.

Citing Articles

A machine learning approach for vocal fold segmentation and disorder classification based on ensemble method.

Nobel S, Swapno S, Islam M, Safran M, Alfarhood S, Mridha M Sci Rep. 2024; 14(1):14435.

PMID: 38910146 PMC: 11758383. DOI: 10.1038/s41598-024-64987-5.

References
1.
Xiong M, Luo J, Ren J, Hu J, Lan L, Zhang Y . Applying Deep Learning with Convolutional Neural Networks to Laryngoscopic Imaging for Automated Segmentation and Classification of Vocal Cord Leukoplakia. Ear Nose Throat J. 2024; :1455613241275341. DOI: 10.1177/01455613241275341. View

2.
Sahoo P, Mishra S, Panigrahi R, Bhoi A, Barsocchi P . An Improvised Deep-Learning-Based Mask R-CNN Model for Laryngeal Cancer Detection Using CT Images. Sensors (Basel). 2022; 22(22). PMC: 9697116. DOI: 10.3390/s22228834. View

3.
Cho W, Lee Y, Joo H, Jeong I, Choi Y, Nam S . Diagnostic Accuracies of Laryngeal Diseases Using a Convolutional Neural Network-Based Image Classification System. Laryngoscope. 2021; 131(11):2558-2566. DOI: 10.1002/lary.29595. View

4.
Paderno A, Holsinger F, Piazza C . Videomics: bringing deep learning to diagnostic endoscopy. Curr Opin Otolaryngol Head Neck Surg. 2021; 29(2):143-148. DOI: 10.1097/MOO.0000000000000697. View

5.
Azam M, Sampieri C, Ioppi A, Africano S, Vallin A, Mocellin D . Deep Learning Applied to White Light and Narrow Band Imaging Videolaryngoscopy: Toward Real-Time Laryngeal Cancer Detection. Laryngoscope. 2021; 132(9):1798-1806. PMC: 9544863. DOI: 10.1002/lary.29960. View