» Articles » PMID: 37574503

Reducing Bias and Quantifying Uncertainty in Fluorescence Produced by PCR

Overview
Journal Bull Math Biol
Publisher Springer
Specialties Biology
Public Health
Date 2023 Aug 13
PMID 37574503
Authors
Affiliations
Soon will be listed here.
Abstract

We present a new approach for relating nucleic-acid content to fluorescence in a real-time Polymerase Chain Reaction (PCR) assay. By coupling a two-type branching process for PCR with a fluorescence analog of Beer's Law, the approach reduces bias and quantifies uncertainty in fluorescence. As the two-type branching process distinguishes between complementary strands of DNA, it allows for a stoichiometric description of reactions between fluorescent probes and DNA and can capture the initial conditions encountered in assays targeting RNA. Analysis of the expected copy-number identifies additional dynamics that occur at short times (or, equivalently, low cycle numbers), while investigation of the variance reveals the contributions from liquid volume transfer, imperfect amplification, and strand-specific amplification (i.e., if one strand is synthesized more efficiently than its complement). Linking the branching process to fluorescence by the Beer's Law analog allows for an a priori description of background fluorescence. It also enables uncertainty quantification (UQ) in fluorescence which, in turn, leads to analytical relationships between amplification efficiency (probability) and limit of detection. This work sets the stage for UQ-PCR, where both the input copy-number and its uncertainty are quantified from fluorescence kinetics.

Citing Articles

Rapid Determination of SARS-CoV-2 Integrity and Infectivity by Using Propidium Monoazide Coupled with Digital Droplet PCR.

Sberna G, Mija C, Lalle E, Rozera G, Matusali G, Carletti F Int J Mol Sci. 2024; 25(11).

PMID: 38892344 PMC: 11172733. DOI: 10.3390/ijms25116156.

References
1.
Beer N, Hindson B, Wheeler E, Hall S, Rose K, Kennedy I . On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal Chem. 2007; 79(22):8471-5. DOI: 10.1021/ac701809w. View

2.
Schwaber J, Andersen S, Nielsen L . Shedding light: The importance of reverse transcription efficiency standards in data interpretation. Biomol Detect Quantif. 2019; 17:100077. PMC: 6374950. DOI: 10.1016/j.bdq.2018.12.002. View

3.
Kaltenboeck B, Wang C . Advances in real-time PCR: application to clinical laboratory diagnostics. Adv Clin Chem. 2005; 40:219-59. PMC: 7112074. DOI: 10.1016/s0065-2423(05)40006-2. View

4.
Schwabe D, Falcke M . On the relation between input and output distributions of scRNA-seq experiments. Bioinformatics. 2021; 38(5):1336-1343. DOI: 10.1093/bioinformatics/btab841. View

5.
Ruiz-Villalba A, Ruijter J, van den Hoff M . Use and Misuse of C in qPCR Data Analysis and Reporting. Life (Basel). 2021; 11(6). PMC: 8229287. DOI: 10.3390/life11060496. View