» Articles » PMID: 37564065

Near-optimal Integration of the Magnitude Information of Time and Numerosity

Overview
Journal R Soc Open Sci
Specialty Science
Date 2023 Aug 11
PMID 37564065
Authors
Affiliations
Soon will be listed here.
Abstract

Magnitude information is often correlated in the external world, providing complementary information about the environment. As if to reflect this relationship, the perceptions of different magnitudes (e.g. time and numerosity) are known to influence one another. Recent studies suggest that such magnitude interaction is similar to cue integration, such as multisensory integration. Here, we tested whether human observers could integrate the magnitudes of two quantities with distinct physical units (i.e. time and numerosity) as abstract magnitude information. The participants compared the magnitudes of two visual stimuli based on time, numerosity, or both. Consistent with the predictions of the maximum-likelihood estimation model, the participants integrated time and numerosity in a near-optimal manner; the weight of each dimension was proportional to their relative reliability, and the integrated estimate was more reliable than either the time or numerosity estimate. Furthermore, the integration approached a statistical optimum as the temporal discrepancy of the acquisition of each piece of information became smaller. These results suggest that magnitude interaction arises through a similar computational mechanism to cue integration. They are also consistent with the idea that different magnitudes are processed by a generalized magnitude system.

Citing Articles

Near-optimal integration of the magnitude information of time and numerosity.

Otsuka T, Yotsumoto Y R Soc Open Sci. 2023; 10(8):230153.

PMID: 37564065 PMC: 10410204. DOI: 10.1098/rsos.230153.

References
1.
Hong F, Badde S, Landy M . Repeated exposure to either consistently spatiotemporally congruent or consistently incongruent audiovisual stimuli modulates the audiovisual common-cause prior. Sci Rep. 2022; 12(1):15532. PMC: 9478143. DOI: 10.1038/s41598-022-19041-7. View

2.
Rohde M, van Dam L, Ernst M . Statistically Optimal Multisensory Cue Integration: A Practical Tutorial. Multisens Res. 2018; 29(4-5):279-317. DOI: 10.1163/22134808-00002510. View

3.
Casasanto D, Pitt B . The Faulty Magnitude Detector: Why SNARC-Like Tasks Cannot Support a Generalized Magnitude System. Cogn Sci. 2019; 43(10):e12794. DOI: 10.1111/cogs.12794. View

4.
Cai Z, Connell L . Space-time interdependence: evidence against asymmetric mapping between time and space. Cognition. 2014; 136:268-81. DOI: 10.1016/j.cognition.2014.11.039. View

5.
Ernst M, Bulthoff H . Merging the senses into a robust percept. Trends Cogn Sci. 2004; 8(4):162-9. DOI: 10.1016/j.tics.2004.02.002. View