» Articles » PMID: 37563152

Mechanism of U6 SnRNA Oligouridylation by Human TUT1

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Aug 10
PMID 37563152
Authors
Affiliations
Soon will be listed here.
Abstract

U6 snRNA is a catalytic RNA responsible for pre-mRNA splicing reactions and undergoes various post-transcriptional modifications during its maturation process. The 3'-oligouridylation of U6 snRNA by the terminal uridylyltransferase, TUT1, provides the Lsm-binding site in U6 snRNA for U4/U6 di-snRNP formation and this ensures pre-mRNA splicing. Here, we present the crystal structure of human TUT1 (hTUT1) complexed with U6 snRNA, representing the post-uridylation of U6 snRNA by hTUT1. The N-terminal ZF-RRM and catalytic palm clamp the single-stranded AUA motif between the 5'-short stem and the 3'-telestem of U6 snRNA, and the ZF-RRM specifically recognizes the AUA motif. The ZF and the fingers hold the telestem, and the 3'-end of U6 snRNA is placed in the catalytic pocket of the palm for oligouridylation. The oligouridylation of U6 snRNA depends on the internal four-adenosine tract in the 5'-part of the telestem of U6 snRNA, and hTUT1 adds uridines until the internal adenosine tract can form base-pairs with the 3'-oligouridine tract. Together, the recognition of the specific structure and sequence of U6 snRNA by the multi-domain TUT1 protein and the intrinsic sequence and structure of U6 snRNA ensure the oligouridylation of U6 snRNA.

Citing Articles

Post-transcriptional monoadenylation by TENT2 terminates human RNA polymerase III transcript 3' end processing and promotes 7SL RNA biogenesis.

Ocheltree C, Skrable B, Pimentel A, Nicholson-Shaw T, Lee S, Lykke-Andersen J bioRxiv. 2025; .

PMID: 39975393 PMC: 11838476. DOI: 10.1101/2025.01.31.635978.


A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals.

Jouravleva K, Zamore P Nat Rev Mol Cell Biol. 2025; .

PMID: 39856370 DOI: 10.1038/s41580-024-00818-9.


Cryo-EM structure of human TUT1:U6 snRNA complex.

Yamashita S, Tomita K Nucleic Acids Res. 2025; 53(2).

PMID: 39831302 PMC: 11734702. DOI: 10.1093/nar/gkae1314.


Genome-wide association study identifies novel susceptible loci and evaluation of polygenic risk score for chronic obstructive pulmonary disease in a Taiwanese population.

Lin W, Liao W, Chen W, Liu T, Chen Y, Tsai F BMC Genomics. 2024; 25(1):607.

PMID: 38886662 PMC: 11184693. DOI: 10.1186/s12864-024-10526-5.


Identification and Expression Analysis of the Nucleotidyl Transferase Protein (NTP) Family in Soybean () under Various Abiotic Stresses.

Kang L, Li C, Qin A, Liu Z, Li X, Zeng L Int J Mol Sci. 2024; 25(2).

PMID: 38256188 PMC: 10816777. DOI: 10.3390/ijms25021115.

References
1.
Trippe R, Sandrock B, Benecke B . A highly specific terminal uridylyl transferase modifies the 3'-end of U6 small nuclear RNA. Nucleic Acids Res. 1998; 26(13):3119-26. PMC: 147682. DOI: 10.1093/nar/26.13.3119. View

2.
Achsel T, Brahms H, Kastner B, Bachi A, Wilm M, Luhrmann R . A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J. 1999; 18(20):5789-802. PMC: 1171645. DOI: 10.1093/emboj/18.20.5789. View

3.
Stevenson A, Norbury C . The Cid1 family of non-canonical poly(A) polymerases. Yeast. 2006; 23(13):991-1000. DOI: 10.1002/yea.1408. View

4.
Morgan M, Much C, DiGiacomo M, Azzi C, Ivanova I, Vitsios D . mRNA 3' uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature. 2017; 548(7667):347-351. PMC: 5768236. DOI: 10.1038/nature23318. View

5.
Jones M, Blahna M, Kozlowski E, Matsuura K, Ferrari J, Morris S . Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival. PLoS Genet. 2012; 8(11):e1003105. PMC: 3510031. DOI: 10.1371/journal.pgen.1003105. View