» Articles » PMID: 37562406

Genetic Activation of Glycolysis in Osteoblasts Preserves Bone Mass in Type I Diabetes

Overview
Journal Cell Chem Biol
Publisher Cell Press
Specialty Biochemistry
Date 2023 Aug 10
PMID 37562406
Authors
Affiliations
Soon will be listed here.
Abstract

Type I diabetes (T1D) impairs bone accrual in patients, but the mechanism is unclear. Here in a murine monogenic model for T1D, we demonstrate that diabetes suppresses bone formation resulting in a rapid loss of both cortical and trabecular bone. Single-cell RNA sequencing uncovers metabolic dysregulation in bone marrow osteogenic cells of diabetic mice. In vivo stable isotope tracing reveals impaired glycolysis in diabetic bone that is highly responsive to insulin stimulation. Remarkably, deletion of the insulin receptor reduces cortical but not trabecular bone. Increasing glucose uptake by overexpressing Glut1 in osteoblasts exacerbates bone defects in T1D mice. Conversely, activation of glycolysis by Pfkfb3 overexpression preserves both trabecular and cortical bone mass in the face of diabetes. The study identifies defective glucose metabolism in osteoblasts as a pathogenic mechanism for osteopenia in T1D, and furthermore implicates boosting osteoblast glycolysis as a potential bone anabolic therapy.

Citing Articles

Metabolic reprogramming in skeletal cell differentiation.

Bertels J, He G, Long F Bone Res. 2024; 12(1):57.

PMID: 39394187 PMC: 11470040. DOI: 10.1038/s41413-024-00374-0.


The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion.

Suh J, Lee Y J Bone Miner Res. 2024; 39(9):1205-1214.

PMID: 38907370 PMC: 11371665. DOI: 10.1093/jbmr/zjae088.


FNDC5/irisin ameliorates bone loss of type 1 diabetes by suppressing endoplasmic reticulum stress‑mediated ferroptosis.

Dong Q, Han Z, Gao M, Tian L J Orthop Surg Res. 2024; 19(1):205.

PMID: 38555440 PMC: 10981808. DOI: 10.1186/s13018-024-04701-3.


Metabolic regulation of skeletal cell fate and function.

Stegen S, Carmeliet G Nat Rev Endocrinol. 2024; 20(7):399-413.

PMID: 38499689 DOI: 10.1038/s41574-024-00969-x.

References
1.
Dixit M, Liu Z, Poudel S, Yildirim G, Zhang Y, Mehta S . Skeletal Response to Insulin in the Naturally Occurring Type 1 Diabetes Mellitus Mouse Model. JBMR Plus. 2021; 5(5):e10483. PMC: 8101621. DOI: 10.1002/jbm4.10483. View

2.
van Gastel N, Torrekens S, Roberts S, Moermans K, Schrooten J, Carmeliet P . Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells. 2012; 30(11):2460-71. DOI: 10.1002/stem.1210. View

3.
Fulzele K, Riddle R, DiGirolamo D, Cao X, Wan C, Chen D . Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010; 142(2):309-19. PMC: 2925155. DOI: 10.1016/j.cell.2010.06.002. View

4.
Song F, Lee W, Marmo T, Ji X, Song C, Liao X . Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic male mice. Elife. 2023; 12. PMC: 10198725. DOI: 10.7554/eLife.85714. View

5.
Joung J, Konermann S, Gootenberg J, Abudayyeh O, Platt R, Brigham M . Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017; 12(4):828-863. PMC: 5526071. DOI: 10.1038/nprot.2017.016. View