6.
Shelton M, Ritso M, Liu J, ONeil D, Kocharyan A, Rudnicki M
. Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. PLoS One. 2019; 14(9):e0222946.
PMC: 6764674.
DOI: 10.1371/journal.pone.0222946.
View
7.
Greiwe J, Cheng B, Rubin D, Yarasheski K, Semenkovich C
. Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. FASEB J. 2001; 15(2):475-82.
DOI: 10.1096/fj.00-0274com.
View
8.
Brotto M, Abreu E
. Sarcopenia: pharmacology of today and tomorrow. J Pharmacol Exp Ther. 2012; 343(3):540-6.
PMC: 3500539.
DOI: 10.1124/jpet.112.191759.
View
9.
Beckwee D, Delaere A, Aelbrecht S, Baert V, Beaudart C, Bruyere O
. Exercise Interventions for the Prevention and Treatment of Sarcopenia. A Systematic Umbrella Review. J Nutr Health Aging. 2019; 23(6):494-502.
DOI: 10.1007/s12603-019-1196-8.
View
10.
Xuan W, Khan M, Ashraf M
. Pluripotent stem cell-induced skeletal muscle progenitor cells with givinostat promote myoangiogenesis and restore dystrophin in injured Duchenne dystrophic muscle. Stem Cell Res Ther. 2021; 12(1):131.
PMC: 7881535.
DOI: 10.1186/s13287-021-02174-3.
View
11.
Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A
. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol. 2015; 33(9):962-9.
DOI: 10.1038/nbt.3297.
View
12.
Brooks S, Faulkner J
. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol. 1988; 404:71-82.
PMC: 1190815.
DOI: 10.1113/jphysiol.1988.sp017279.
View
13.
Huo F, Liu Q, Liu H
. Contribution of muscle satellite cells to sarcopenia. Front Physiol. 2022; 13:892749.
PMC: 9411786.
DOI: 10.3389/fphys.2022.892749.
View
14.
Rosen G, Sanes J, LACHANCE R, Cunningham J, Roman J, Dean D
. Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell. 1992; 69(7):1107-19.
DOI: 10.1016/0092-8674(92)90633-n.
View
15.
Hight-Warburton W, Parsons M
. Regulation of cell migration by α4 and α9 integrins. Biochem J. 2019; 476(4):705-718.
DOI: 10.1042/BCJ20180415.
View
16.
Ganju R, Brubaker S, Meyer J, Dutt P, Yang Y, Qin S
. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem. 1998; 273(36):23169-75.
DOI: 10.1074/jbc.273.36.23169.
View
17.
Lo J, U K, Yiu T, Ong M, Lee W
. Sarcopenia: Current treatments and new regenerative therapeutic approaches. J Orthop Translat. 2020; 23:38-52.
PMC: 7256062.
DOI: 10.1016/j.jot.2020.04.002.
View
18.
Manickam R, Tur J, Badole S, Chapalamadugu K, Sinha P, Wang Z
. Nampt activator P7C3 ameliorates diabetes and improves skeletal muscle function modulating cell metabolism and lipid mediators. J Cachexia Sarcopenia Muscle. 2022; 13(2):1177-1196.
PMC: 8977983.
DOI: 10.1002/jcsm.12887.
View
19.
Relaix F, Bencze M, Borok M, Der Vartanian A, Gattazzo F, Mademtzoglou D
. Perspectives on skeletal muscle stem cells. Nat Commun. 2021; 12(1):692.
PMC: 7846784.
DOI: 10.1038/s41467-020-20760-6.
View
20.
Xuan W, Liao Y, Chen B, Huang Q, Xu D, Liu Y
. Detrimental effect of fractalkine on myocardial ischaemia and heart failure. Cardiovasc Res. 2011; 92(3):385-93.
DOI: 10.1093/cvr/cvr221.
View