» Articles » PMID: 37507984

Investigating the Interplay Between Tomato Leaf Curl New Delhi Virus Infection, Starch Metabolism and Antioxidant Defence System in Potato ( L.)

Overview
Date 2023 Jul 29
PMID 37507984
Authors
Affiliations
Soon will be listed here.
Abstract

The potato apical leaf curl disease is caused by tomato leaf curl New Delhi virus-potato (ToLCNDV-potato), which severely alters a plant's starch metabolism, starch hydrolysing enzymes, and antioxidant mechanism. In this study, the result suggested that ToLCNDV-potato significantly ( < 0.01) affected the morphological parameters and photosynthetic pigment system in both the cultivars of potato, viz., Kufri Pukhraj (susceptible) and Kufri Bahar (tolerant). However, the impact of ToLCNDV-potato was lower in Kufri Bahar. Moreover, the viral infection in potato showed significant ( < 0.01) enhancement in the leakage of plant oxidative metabolites such as proline and malondialdehyde (MDA) which was further confirmed with higher electrolyte leakage. The viral infection imbalance of starch metabolism in the leaves ultimately affects the carbohydrate profile. ToLCNDV-potato significantly lowered starch synthesis, enhanced the accumulation of sucrose, glucose, fructose and-which was further validated by enzymatic estimation of β-amylase-α-amylase and phosphorylase activity in the leaves of both cultivars. The antioxidant enzymes, viz., catalase, ascorbate peroxidase, and superoxide dismutase, were reported to be enhanced in both the cultivars due to ToLCNDV-potato infection. The higher enhancement of antioxidant enzyme activity was observed in Kufri Bahar, which signifies its resistant attributes. These findings in the potato plant broaden our understanding of the regulatory mechanisms of starch metabolism and antioxidant activity and provide proof of concept for breeding potato for ToLCNDV-potato tolerance.

References
1.
Ben Rejeb I, Pastor V, Mauch-Mani B . Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants (Basel). 2016; 3(4):458-75. PMC: 4844285. DOI: 10.3390/plants3040458. View

2.
Sharma N, Muthamilarasan M, Dulani P, Prasad M . Genomic dissection of ROS detoxifying enzyme encoding genes for their role in antioxidative defense mechanism against Tomato leaf curl New Delhi virus infection in tomato. Genomics. 2021; 113(3):889-899. DOI: 10.1016/j.ygeno.2021.01.022. View

3.
Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S . An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res. 2017; 232:22-33. DOI: 10.1016/j.virusres.2017.01.015. View

4.
Heath R, Packer L . Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968; 125(1):189-98. DOI: 10.1016/0003-9861(68)90654-1. View

5.
Sun H, Fan J, Tian Z, Ma L, Meng Y, Yang Z . Effects of treatment methods on the formation of resistant starch in purple sweet potato. Food Chem. 2021; 367:130580. DOI: 10.1016/j.foodchem.2021.130580. View