Resistance That Stacks Up: Engineering Rust and Mildew Disease Control in the Cereal Crops Wheat and Barley
Overview
Affiliations
Staying ahead of the arms race against rust and mildew diseases in cereal crops is essential to maintain and preserve food security. The methodological challenges associated with conventional resistance breeding are major bottlenecks for deploying resistance (R) genes in high-yielding crop varieties. Advancements in our knowledge of plant genomes, structural mechanisms, innovations in bioinformatics, and improved plant transformation techniques have alleviated this bottleneck by permitting rapid gene isolation, functional studies, directed engineering of synthetic resistance and precise genome manipulation in elite crop cultivars. Most cloned cereal R genes encode canonical immune receptors which, on their own, are prone to being overcome through selection for resistance-evading pathogenic strains. However, the increasingly large repertoire of cloned R genes permits multi-gene stacking that, in principle, should provide longer-lasting resistance. This review discusses how these genomics-enabled developments are leading to new breeding and biotechnological opportunities to achieve durable rust and powdery mildew control in cereals.
Hao W, Wu Y, Guo Q, Wu J, Lin M, Hu Q Theor Appl Genet. 2025; 138(3):63.
PMID: 40021553 DOI: 10.1007/s00122-025-04838-7.
Advances in the molecular mechanism of grapevine resistance to fungal diseases.
Li Z, Wu R, Guo F, Wang Y, Nick P, Wang X Mol Hortic. 2025; 5(1):1.
PMID: 39743511 PMC: 11694456. DOI: 10.1186/s43897-024-00119-x.
Liu S, Xiang M, Wang X, Li J, Cheng X, Li H Plant Commun. 2024; 6(1):101138.
PMID: 39318097 PMC: 11783889. DOI: 10.1016/j.xplc.2024.101138.
Yuan Z, Rembe M, Mascher M, Stein N, Jayakodi M, Borner A J Exp Bot. 2024; 75(18):5940-5954.
PMID: 38932564 PMC: 11427843. DOI: 10.1093/jxb/erae283.
Liu X, Yang C, Wu S, Dong H, Wang G, Han X Int J Mol Sci. 2024; 25(12).
PMID: 38928313 PMC: 11204014. DOI: 10.3390/ijms25126603.