» Articles » PMID: 37491366

Single-Nucleus Profiling Identifies Accelerated Oligodendrocyte Precursor Cell Senescence in a Mouse Model of Down Syndrome

Overview
Journal eNeuro
Specialty Neurology
Date 2023 Jul 25
PMID 37491366
Authors
Affiliations
Soon will be listed here.
Abstract

Down syndrome (DS), the most common genetic cause of intellectual disability, is associated with lifelong cognitive deficits. However, the mechanisms by which triplication of chromosome 21 genes drive neuroinflammation and cognitive dysfunction are poorly understood. Here, using the Ts65Dn mouse model of DS, we performed an integrated single-nucleus ATAC and RNA-sequencing (snATAC-seq and snRNA-seq) analysis of the adult cortex. We identified cell type-specific transcriptional and chromatin-associated changes in the Ts65Dn cortex, including regulators of neuroinflammation, transcription and translation, myelination, and mitochondrial function. We discovered enrichment of a senescence-associated transcriptional signature in Ts65Dn oligodendrocyte (OL) precursor cells (OPCs) and epigenetic changes consistent with a loss of heterochromatin. We found that senescence is restricted to a subset of OPCs concentrated in deep cortical layers. Treatment of Ts65Dn mice with a senescence-reducing flavonoid rescued cortical OPC proliferation, restored microglial homeostasis, and improved contextual fear memory. Together, these findings suggest that cortical OPC senescence may be an important driver of neuropathology in DS.

References
1.
Yeh H, Ikezu T . Transcriptional and Epigenetic Regulation of Microglia in Health and Disease. Trends Mol Med. 2018; 25(2):96-111. PMC: 6377292. DOI: 10.1016/j.molmed.2018.11.004. View

2.
Mei L, Xiong W . Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008; 9(6):437-52. PMC: 2682371. DOI: 10.1038/nrn2392. View

3.
Fan H, Zhao J, Yan J, Du G, Fu Q, Shi J . Effect of Notch1 gene on remyelination in multiple sclerosis in mouse models of acute demyelination. J Cell Biochem. 2018; 119(11):9284-9294. DOI: 10.1002/jcb.27197. View

4.
Reeves R, Irving N, Moran T, WOHN A, Kitt C, Sisodia S . A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet. 1995; 11(2):177-84. DOI: 10.1038/ng1095-177. View

5.
Puente-Bedia A, Berciano M, Martinez-Cue C, Lafarga M, Rueda N . Oxidative-Stress-Associated Proteostasis Disturbances and Increased DNA Damage in the Hippocampal Granule Cells of the Ts65Dn Model of Down Syndrome. Antioxidants (Basel). 2022; 11(12). PMC: 9774833. DOI: 10.3390/antiox11122438. View