» Articles » PMID: 3746400

Contractile Differences Between Muscle Units in the Medial Rectus and Lateral Rectus Muscles in the Cat

Overview
Journal J Neurophysiol
Specialties Neurology
Physiology
Date 1986 Jul 1
PMID 3746400
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Conjugate eye movements in the horizontal plane are accomplished by the coactivation of the medial rectus (MR) muscle of one orbit and the lateral rectus (LR) muscle of the other. While control of these excursions has been thought to be effected by identical inputs to these muscles, recent studies have demonstrated that MR motoneurons receive different inputs than LR motoneurons. This raises the question of whether the character of the muscles they control are different. The present study evaluated the contractile properties of MR and LR muscle units in the cat. Based on the mechanical aspects of their contractile properties, only two physiological types of muscle units were identified within the MR and LR muscles: twitch and non-twitch muscle units. Twitch muscle units represented over 90% of the units sampled in each muscle. Significant differences in the rate-related and the tension-related contractile properties were demonstrated between MR and LR twitch muscle units. MR muscle units exhibited significantly faster twitch contractions than did LR units. The rate of stimulation at which MR units exhibited fused tetany was significantly higher than for LR units, although units from both muscles demonstrated similar rates of rise of tension at fusion. The rate of rise of tension was closely correlated to tension production (twitch and tetanus) in each muscle. However, MR muscle units demonstrated significantly weaker maximum tetanic tensions and lower tetanus-to-twitch ratios than LR units. These data indicate that while similar physiological types of muscle fibers are present within the MR and LR, MR muscle units are adapted for faster rate-related properties, whereas LR units are adapted for greater tetanic tensions. These distinctions between MR and LR muscle units, coupled with differences between the afferent inputs to their respective motoneurons, suggest that the preservation of conjugacy during horizontal gaze shifts may require a complex interaction of peripheral and central factors.

Citing Articles

Functional diversity of motoneurons in the oculomotor system.

Hernandez R, Calvo P, Blumer R, de la Cruz R, Pastor A Proc Natl Acad Sci U S A. 2019; 116(9):3837-3846.

PMID: 30760592 PMC: 6397535. DOI: 10.1073/pnas.1818524116.


Effects of electrode penetrations into the abducens nucleus of the monkey: eye movement recordings and histopathological evaluation of the nuclei and lateral rectus muscles.

McClung J, Cullen K, Shall M, Dimitrova D, Goldberg S Exp Brain Res. 2004; 158(2):180-8.

PMID: 15221166 DOI: 10.1007/s00221-004-1892-3.


Extraocular motor unit and whole-muscle contractile properties in the squirrel monkey. Summation of forces and fiber morphology.

Shall M, Dimitrova D, Goldberg S Exp Brain Res. 2003; 151(3):338-45.

PMID: 12819843 DOI: 10.1007/s00221-003-1506-5.


Complex three-dimensional patterns of myosin isoform expression: differences between and within specific extraocular muscles.

McLoon L, Rios L, Wirtschafter J J Muscle Res Cell Motil. 2000; 20(8):771-83.

PMID: 10730580 DOI: 10.1023/a:1005656312518.


Extraocular motor unit and whole-muscle responses in the lateral rectus muscle of the squirrel monkey.

Goldberg S, Meredith M, Shall M J Neurosci. 1998; 18(24):10629-39.

PMID: 9852598 PMC: 6793351.