» Articles » PMID: 37455478

3D Synaptic Organization of Layer III of the Human Anterior Cingulate and Temporopolar Cortex

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2023 Jul 17
PMID 37455478
Authors
Affiliations
Soon will be listed here.
Abstract

The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic organization of the human brain obtained with a short post-mortem delay allows excellent results to be obtained. We have used this technology to analyze layer III of the anterior cingulate cortex (Brodmann area 24) and the temporopolar cortex, including the temporal pole (Brodmann area 38 ventral and dorsal) and anterior middle temporal gyrus (Brodmann area 21). Our results, based on 6695 synaptic junctions fully reconstructed in 3D, revealed that Brodmann areas 24, 21 and ventral area 38 showed similar synaptic density and synaptic size, whereas dorsal area 38 displayed the highest synaptic density and the smallest synaptic size. However, the proportion of the different types of synapses (excitatory and inhibitory), the postsynaptic targets, and the shapes of excitatory and inhibitory synapses were similar, regardless of the region examined. These observations indicate that certain aspects of the synaptic organization are rather homogeneous, whereas others show specific variations across cortical regions.

Citing Articles

Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex.

Plaza-Alonso S, Cano-Astorga N, DeFelipe J, Alonso-Nanclares L Elife. 2025; 14.

PMID: 39882848 PMC: 11867616. DOI: 10.7554/eLife.96144.


Of mice and men: Dendritic architecture differentiates human from mice neuronal networks.

Kanari L, Shi Y, Arnaudon A, Barros-Zulaica N, Benavides-Piccione R, Coggan J bioRxiv. 2025; .

PMID: 39763990 PMC: 11702562. DOI: 10.1101/2023.09.11.557170.


Invariance of Mitochondria and Synapses in the Primary Visual Cortex of Mammals Provides Insight Into Energetics and Function.

Karl M, Kim Y, Rajendran K, Manger P, Sherwood C J Comp Neurol. 2024; 532(9):e25669.

PMID: 39291629 PMC: 11412485. DOI: 10.1002/cne.25669.


Volume electron microscopy analysis of synapses in primary regions of the human cerebral cortex.

Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L Cereb Cortex. 2024; 34(8.

PMID: 39106175 PMC: 11302151. DOI: 10.1093/cercor/bhae312.


A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution.

Shapson-Coe A, Januszewski M, Berger D, Pope A, Wu Y, Blakely T Science. 2024; 384(6696):eadk4858.

PMID: 38723085 PMC: 11718559. DOI: 10.1126/science.adk4858.


References
1.
Benavides-Piccione R, Arellano J, DeFelipe J . Catecholaminergic innervation of pyramidal neurons in the human temporal cortex. Cereb Cortex. 2005; 15(10):1584-91. DOI: 10.1093/cercor/bhi036. View

2.
Blaizot X, Mansilla F, Insausti A, Constans J, Salinas-Alaman A, Pro-Sistiaga P . The human parahippocampal region: I. Temporal pole cytoarchitectonic and MRI correlation. Cereb Cortex. 2010; 20(9):2198-212. PMC: 2923216. DOI: 10.1093/cercor/bhp289. View

3.
Kubota Y, Kondo S, Nomura M, Hatada S, Yamaguchi N, Mohamed A . Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. Elife. 2015; 4. PMC: 4518632. DOI: 10.7554/eLife.07919. View

4.
Olson I, McCoy D, Klobusicky E, Ross L . Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci. 2012; 8(2):123-33. PMC: 3575728. DOI: 10.1093/scan/nss119. View

5.
Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez J, DeFelipe J . Gender differences in human cortical synaptic density. Proc Natl Acad Sci U S A. 2008; 105(38):14615-9. PMC: 2567215. DOI: 10.1073/pnas.0803652105. View