» Articles » PMID: 37452637

The Stress Sensor GCN2 Differentially Controls Ribosome Biogenesis in Colon Cancer According to the Nutritional Context

Abstract

Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.

Citing Articles

An ISR-independent role of GCN2 prevents excessive ribosome biogenesis and mRNA translation.

Roman-Trufero M, Kleijn I, Blighe K, Zhou J, Saavedra-Garcia P, Gaffar A Life Sci Alliance. 2025; 8(5).

PMID: 40032489 PMC: 11876863. DOI: 10.26508/lsa.202403014.


Multifaceted role of GCN2 in tumor adaptation and therapeutic targeting.

Chen C, Xie Y, Qian S Transl Oncol. 2024; 49:102096.

PMID: 39178574 PMC: 11388189. DOI: 10.1016/j.tranon.2024.102096.


SUrface SEnsing of Translation (SUnSET), a Method Based on Western Blot Assessing Protein Synthesis Rates in vitro.

Piecyk M, Fauvre J, Duret C, Chaveroux C, Ferraro-Peyret C Bio Protoc. 2024; 14(3):e4933.

PMID: 38379826 PMC: 10875356. DOI: 10.21769/BioProtoc.4933.


Inhibition of GCN2 Reveals Synergy with Cell-Cycle Regulation and Proteostasis.

Gauthier-Coles G, Rahimi F, Broer A, Broer S Metabolites. 2023; 13(10).

PMID: 37887389 PMC: 10609202. DOI: 10.3390/metabo13101064.

References
1.
Gomes A, Guillaume L, Grimes D, Fehrenbach J, Lobjois V, Ducommun B . Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition. PLoS One. 2016; 11(8):e0161239. PMC: 5004916. DOI: 10.1371/journal.pone.0161239. View

2.
Grummt I, Smith V, Grummt F . Amino acid starvation affects the initiation frequency of nucleolar RNA polymerase. Cell. 1976; 7(3):439-45. DOI: 10.1016/0092-8674(76)90174-4. View

3.
Wang Y, Ning Y, Alam G, Jankowski B, Dong Z, Nor J . Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway. Neoplasia. 2013; 15(8):989-97. PMC: 3730049. DOI: 10.1593/neo.13262. View

4.
Catez F, Dalla Venezia N, Marcel V, Zorbas C, Lafontaine D, Diaz J . Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochem Pharmacol. 2018; 159:74-81. DOI: 10.1016/j.bcp.2018.11.014. View

5.
Hald O, Olsen L, Gallo-Oller G, Elfman L, Lokke C, Kogner P . Inhibitors of ribosome biogenesis repress the growth of MYCN-amplified neuroblastoma. Oncogene. 2018; 38(15):2800-2813. PMC: 6484764. DOI: 10.1038/s41388-018-0611-7. View