» Articles » PMID: 37450595

RAS-dependent RAF-MAPK Hyperactivation by Pathogenic RIT1 is a Therapeutic Target in Noonan Syndrome-associated Cardiac Hypertrophy

Abstract

RIT1 is a RAS guanosine triphosphatase (GTPase) that regulates different aspects of signal transduction and is mutated in lung cancer, leukemia, and in the germline of individuals with Noonan syndrome. Pathogenic RIT1 proteins promote mitogen-activated protein kinase (MAPK) hyperactivation; however, this mechanism remains poorly understood. Here, we show that RAF kinases are direct effectors of membrane-bound mutant RIT1 necessary for MAPK activation. We identify critical residues in RIT1 that facilitate interaction with membrane lipids and show that these are necessary for association with RAF kinases and MAPK activation. Although mutant RIT1 binds to RAF kinases directly, it fails to activate MAPK signaling in the absence of classical RAS proteins. Consistent with aberrant RAF/MAPK activation as a driver of disease, we show that pathway inhibition alleviates cardiac hypertrophy in a mouse model of mutant Noonan syndrome. These data shed light on the function of pathogenic RIT1 and identify avenues for therapeutic intervention.

Citing Articles

RIT1 Promotes the Proliferation of Gliomas Through the Regulation of the PI3K/AKT/c-Myc Signalling Pathway.

Liu Z, Jiang H, Kan H, Zhang L, Rao Y, Jiang X J Cell Mol Med. 2025; 29(2):e70362.

PMID: 39833023 PMC: 11745823. DOI: 10.1111/jcmm.70362.


Inhibition and degradation of NRAS with a pan-NRAS monobody.

Whaby M, Ketavarapu G, Koide A, Mazzei M, Mintoo M, Glasser E Oncogene. 2024; 43(48):3489-3497.

PMID: 39379700 PMC: 11584388. DOI: 10.1038/s41388-024-03186-y.


Dysregulation of RAS proteostasis by autosomal-dominant LZTR1 mutation induces Noonan syndrome-like phenotypes in mice.

Abe T, Morisaki K, Niihori T, Terao M, Takada S, Aoki Y JCI Insight. 2024; 9(22).

PMID: 39352760 PMC: 11601938. DOI: 10.1172/jci.insight.182382.


The deubiquitinase USP9X regulates RIT1 protein abundance and oncogenic phenotypes.

Riley A, Grant M, Snell A, Cromwell E, Vichas A, Moorthi S iScience. 2024; 27(8):110499.

PMID: 39161959 PMC: 11332844. DOI: 10.1016/j.isci.2024.110499.


Functional and structural insights into RAS effector proteins.

Mozzarelli A, Simanshu D, Castel P Mol Cell. 2024; 84(15):2807-2821.

PMID: 39025071 PMC: 11316660. DOI: 10.1016/j.molcel.2024.06.027.


References
1.
Joneson T, White M, Wigler M, Bar-Sagi D . Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science. 1996; 271(5250):810-2. DOI: 10.1126/science.271.5250.810. View

2.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-82. PMC: 3855844. DOI: 10.1038/nmeth.2019. View

3.
Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A . NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995; 6(3):277-93. DOI: 10.1007/BF00197809. View

4.
Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K . Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet. 2013; 93(1):173-80. PMC: 3710767. DOI: 10.1016/j.ajhg.2013.05.021. View

5.
Mason C, Springer C, Cooper R, Superti-Furga G, Marshall C, Marais R . Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 1999; 18(8):2137-48. PMC: 1171298. DOI: 10.1093/emboj/18.8.2137. View