» Articles » PMID: 37443271

Artificial Intelligence in the Neonatal Intensive Care Unit: the Time is Now

Overview
Journal J Perinatol
Date 2023 Jul 13
PMID 37443271
Authors
Affiliations
Soon will be listed here.
Abstract

Artificial intelligence (AI) has the potential to revolutionize the neonatal intensive care unit (NICU) care by leveraging the large-scale, high-dimensional data that are generated by NICU patients. There is an emerging recognition that the confluence of technological progress, commercialization pathways, and rich data sets provides a unique opportunity for AI to make a lasting impact on the NICU. In this perspective article, we discuss four broad categories of AI applications in the NICU: imaging interpretation, prediction modeling of electronic health record data, integration of real-time monitoring data, and documentation and billing. By enhancing decision-making, streamlining processes, and improving patient outcomes, AI holds the potential to transform the quality of care for vulnerable newborns, making the excitement surrounding AI advancements well-founded and the potential for significant positive change stronger than ever before.

Citing Articles

Explainable Artificial Intelligence in Paediatric: Challenges for the Future.

Salih A, Menegaz G, Pillay T, Boyle E Health Sci Rep. 2024; 7(12):e70271.

PMID: 39669185 PMC: 11635175. DOI: 10.1002/hsr2.70271.


Extraction and evaluation of features of preterm patent ductus arteriosus in chest X-ray images using deep learning.

Chang P, Choi H, Lee J, Kim H Sci Rep. 2024; 14(1):29382.

PMID: 39592675 PMC: 11599863. DOI: 10.1038/s41598-024-79361-8.


Development of a machine learning model to identify intraventricular hemorrhage using time-series analysis in preterm infants.

Han H, Ji H, Choi J, Chung Y, Kim H, Choi C Sci Rep. 2024; 14(1):23740.

PMID: 39390062 PMC: 11467187. DOI: 10.1038/s41598-024-74298-4.


Early prediction of mortality and morbidities in VLBW preterm neonates using machine learning.

Shu C, Zebda R, Espinosa C, Reiss J, Debuyserie A, Reber K Pediatr Res. 2024; .

PMID: 39379627 DOI: 10.1038/s41390-024-03604-7.


Combining artificial intelligence and conventional statistics to predict bronchopulmonary dysplasia in very preterm infants using routinely collected clinical variables.

Montagna S, Magno D, Ferretti S, Stelluti M, Gona A, Dionisi C Pediatr Pulmonol. 2024; 59(12):3400-3409.

PMID: 39150150 PMC: 11601006. DOI: 10.1002/ppul.27216.


References
1.
Rosenblatt F . The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958; 65(6):386-408. DOI: 10.1037/h0042519. View

2.
Beam A, Kohane I . Translating Artificial Intelligence Into Clinical Care. JAMA. 2016; 316(22):2368-2369. DOI: 10.1001/jama.2016.17217. View

3.
Yu K, Beam A, Kohane I . Artificial intelligence in healthcare. Nat Biomed Eng. 2019; 2(10):719-731. DOI: 10.1038/s41551-018-0305-z. View

4.
Schmaltz A, Beam A . Sharpening the resolution on data matters: a brief roadmap for understanding deep learning for medical data. Spine J. 2020; 21(10):1606-1609. PMC: 7904953. DOI: 10.1016/j.spinee.2020.08.012. View

5.
LeCun Y, Bengio Y, Hinton G . Deep learning. Nature. 2015; 521(7553):436-44. DOI: 10.1038/nature14539. View