» Articles » PMID: 37441236

Electrochemically Driven Hydrogen Atom Transfer Catalysis: A Tool for C(sp)/Si-H Functionalization and Hydrofunctionalization of Alkenes

Overview
Journal ACS Catal
Date 2023 Jul 13
PMID 37441236
Authors
Affiliations
Soon will be listed here.
Abstract

Electrochemically driven hydrogen atom transfer (HAT) catalysis provides a complementary approach for the transformation of redox-inactive substrates that would be inaccessible to conventional electron transfer (ET) catalysis. Moreover, electrochemically driven HAT catalysis could promote organic transformations with either hydrogen atom abstraction or donation as the key step. It provides a versatile and effective tool for the direct functionalization of C(sp)-H/Si-H bonds and the hydrofunctionalization of alkenes. Despite these attractive properties, electrochemically driven HAT catalysis has been largely overlooked due to the lack of understanding of both the catalytic mechanism and how catalyst selection should occur. In this Review, we give an overview of the HAT catalysis applications in the direct C(sp)-H/Si-H functionalization and hydrofunctionalization of alkenes. The mechanistic pathways, physical properties of the HAT mediators, and state-of-the-art examples are described and discussed.

Citing Articles

Electrochemical DABCOylation enables challenging aromatic C-H amination.

Malapit C, Stewart G, Alvarez E, Rapala C, Sklar J, Kalow J Res Sq. 2025; .

PMID: 39866880 PMC: 11760240. DOI: 10.21203/rs.3.rs-5442169/v1.


Electricity-driven organic hydrogenation using water as the hydrogen source.

Kundu B, Sun Y Chem Sci. 2024; .

PMID: 39371462 PMC: 11450802. DOI: 10.1039/d4sc03836c.


Electro-photochemical Functionalization of C(sp)-H bonds: Synthesis toward Sustainability.

Singh P, Konig B, Shaikh A JACS Au. 2024; 4(9):3340-3357.

PMID: 39328771 PMC: 11423327. DOI: 10.1021/jacsau.4c00496.


Water mediated redox-neutral cleavage of arylalkenes via photoredox catalysis.

Liao K, Fang Y, Sheng L, Chen J, Huang Y Nat Commun. 2024; 15(1):6227.

PMID: 39043702 PMC: 11266562. DOI: 10.1038/s41467-024-50624-2.


Thermodynamic H-Abstraction Abilities of Nitrogen Centered Radical Cations as Potential Hydrogen Atom Transfer Catalysts in Y-H Bond Functionalization.

Zhao X, Hou Y, Qian B, Shen G ACS Omega. 2024; 9(24):26708-26718.

PMID: 38911737 PMC: 11191127. DOI: 10.1021/acsomega.4c04209.


References
1.
Hermans I, Jacobs P, Peeters J . Autoxidation catalysis with N-hydroxyimides: more-reactive radicals or just more radicals?. Phys Chem Chem Phys. 2007; 9(6):686-90. DOI: 10.1039/b616392k. View

2.
Liang H, Wang L, Ji Y, Wang H, Zhang B . Selective Electrochemical Hydrolysis of Hydrosilanes to Silanols via Anodically Generated Silyl Cations. Angew Chem Int Ed Engl. 2020; 60(4):1839-1844. DOI: 10.1002/anie.202010437. View

3.
Karkas M . Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev. 2018; 47(15):5786-5865. DOI: 10.1039/c7cs00619e. View

4.
Derosa J, Garrido-Barros P, Peters J . Electrocatalytic Reduction of C-C π-Bonds via a Cobaltocene-Derived Concerted Proton-Electron Transfer Mediator: Fumarate Hydrogenation as a Model Study. J Am Chem Soc. 2021; 143(25):9303-9307. DOI: 10.1021/jacs.1c03335. View

5.
Yoshida J, Shimizu A, Hayashi R . Electrogenerated Cationic Reactive Intermediates: The Pool Method and Further Advances. Chem Rev. 2017; 118(9):4702-4730. DOI: 10.1021/acs.chemrev.7b00475. View