» Articles » PMID: 37438352

Analysis of DIA Proteomics Data Using MSFragger-DIA and FragPipe Computational Platform

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Jul 12
PMID 37438352
Authors
Affiliations
Soon will be listed here.
Abstract

Liquid chromatography (LC) coupled with data-independent acquisition (DIA) mass spectrometry (MS) has been increasingly used in quantitative proteomics studies. Here, we present a fast and sensitive approach for direct peptide identification from DIA data, MSFragger-DIA, which leverages the unmatched speed of the fragment ion indexing-based search engine MSFragger. Different from most existing methods, MSFragger-DIA conducts a database search of the DIA tandem mass (MS/MS) spectra prior to spectral feature detection and peak tracing across the LC dimension. To streamline the analysis of DIA data and enable easy reproducibility, we integrate MSFragger-DIA into the FragPipe computational platform for seamless support of peptide identification and spectral library building from DIA, data-dependent acquisition (DDA), or both data types combined. We compare MSFragger-DIA with other DIA tools, such as DIA-Umpire based workflow in FragPipe, Spectronaut, DIA-NN library-free, and MaxDIA. We demonstrate the fast, sensitive, and accurate performance of MSFragger-DIA across a variety of sample types and data acquisition schemes, including single-cell proteomics, phosphoproteomics, and large-scale tumor proteome profiling studies.

Citing Articles

Integration of proteomics profiling data to facilitate discovery of cancer neoantigens: a survey.

Luo S, Peng H, Shi Y, Cai J, Zhang S, Shao N Brief Bioinform. 2025; 26(2).

PMID: 40052441 PMC: 11886573. DOI: 10.1093/bib/bbaf087.


Mapping the nanoscale organization of the human cell surface proteome reveals new functional associations and surface antigen clusters.

Floyd B, Schmidt E, Till N, Yang J, Liao P, George B bioRxiv. 2025; .

PMID: 40027624 PMC: 11870420. DOI: 10.1101/2025.02.12.637979.


A Scalable, Web-Based Platform for Proteomics Data Processing, Result Storage and Analysis.

Schneider M, Zolg D, Samaras P, Ben Fredj S, Bold D, Guevende A J Proteome Res. 2025; 24(3):1241-1249.

PMID: 39982847 PMC: 11894649. DOI: 10.1021/acs.jproteome.4c00871.


Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Noto A, Valenzisi P, Di Feo F, Fratini F, Kulikowicz T, Sommers J Nat Commun. 2025; 16(1):997.

PMID: 39870632 PMC: 11772831. DOI: 10.1038/s41467-025-55958-z.


─ A User-Friendly Command-Line Tool Simplifying Differential Expression Analysis in Quantitative Proteomics.

Wolski W, Grossmann J, Schwarz L, Leary P, Turker C, Nanni P J Proteome Res. 2025; 24(2):955-965.

PMID: 39849819 PMC: 11812002. DOI: 10.1021/acs.jproteome.4c00911.


References
1.
Yang K, Yu F, Teo G, Li K, Demichev V, Ralser M . MSBooster: improving peptide identification rates using deep learning-based features. Nat Commun. 2023; 14(1):4539. PMC: 10374903. DOI: 10.1038/s41467-023-40129-9. View

2.
Yang Y, Liu X, Shen C, Lin Y, Yang P, Qiao L . In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Nat Commun. 2020; 11(1):146. PMC: 6952453. DOI: 10.1038/s41467-019-13866-z. View

3.
Ting Y, Egertson J, Bollinger J, Searle B, Payne S, Noble W . PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data. Nat Methods. 2017; 14(9):903-908. PMC: 5578911. DOI: 10.1038/nmeth.4390. View

4.
Kall L, Canterbury J, Weston J, Noble W, MacCoss M . Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007; 4(11):923-5. DOI: 10.1038/nmeth1113. View

5.
Tsai T, Choi M, Banfai B, Liu Y, MacLean B, Dunkley T . Selection of Features with Consistent Profiles Improves Relative Protein Quantification in Mass Spectrometry Experiments. Mol Cell Proteomics. 2020; 19(6):944-959. PMC: 7261813. DOI: 10.1074/mcp.RA119.001792. View