Baquer F, Jaulhac B, Barthel C, Paz M, Wolfgramm J, Muller A
Sci Rep. 2023; 13(1):16393.
PMID: 37773515
PMC: 10541882.
DOI: 10.1038/s41598-023-43566-0.
Mans B
Front Physiol. 2019; 10:530.
PMID: 31118903
PMC: 6504839.
DOI: 10.3389/fphys.2019.00530.
Anatriello E, Oliveira C, Oliveira N, Fisch A, Milanezi C, da Silva J
Parasit Vectors. 2017; 10(1):326.
PMID: 28693553
PMC: 5502490.
DOI: 10.1186/s13071-017-2248-8.
Xu X, Zhang B, Yang S, An S, Ribeiro J, Andersen J
Sci Rep. 2016; 6:36574.
PMID: 27819327
PMC: 5098211.
DOI: 10.1038/srep36574.
Franco P, Silva N, do Vale V, Abreu J, Santos V, Gontijo N
Exp Parasitol. 2016; 164:91-6.
PMID: 26948715
PMC: 6318796.
DOI: 10.1016/j.exppara.2016.03.002.
Co-feeding transmission in Lyme disease pathogens.
Voordouw M
Parasitology. 2014; 142(2):290-302.
PMID: 25295405
PMC: 4313706.
DOI: 10.1017/S0031182014001486.
Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment.
Wikel S
Front Microbiol. 2013; 4:337.
PMID: 24312085
PMC: 3833115.
DOI: 10.3389/fmicb.2013.00337.
The "Vampirome": Transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies.
Francischetti I, Assumpcao T, Ma D, Li Y, Vicente E, Uieda W
J Proteomics. 2013; 82:288-319.
PMID: 23411029
PMC: 3685427.
DOI: 10.1016/j.jprot.2013.01.009.
New Insights on the Inflammatory Role of Lutzomyia longipalpis Saliva in Leishmaniasis.
Prates D, Araujo-Santos T, Brodskyn C, Barral-Netto M, Barral A, Borges V
J Parasitol Res. 2012; 2012:643029.
PMID: 22506098
PMC: 3306990.
DOI: 10.1155/2012/643029.
Neural control of salivary glands in ixodid ticks.
Simo L, Zitnan D, Park Y
J Insect Physiol. 2011; 58(4):459-66.
PMID: 22119563
PMC: 3295888.
DOI: 10.1016/j.jinsphys.2011.11.006.
The role of saliva in tick feeding.
Francischetti I, Sa-Nunes A, Mans B, Santos I, Ribeiro J
Front Biosci (Landmark Ed). 2009; 14(6):2051-88.
PMID: 19273185
PMC: 2785505.
DOI: 10.2741/3363.
Subversion of complement by hematophagous parasites.
Schroeder H, Skelly P, Zipfel P, Losson B, Vanderplasschen A
Dev Comp Immunol. 2008; 33(1):5-13.
PMID: 18762211
PMC: 2642905.
DOI: 10.1016/j.dci.2008.07.010.
The structure of OMCI, a novel lipocalin inhibitor of the complement system.
Roversi P, Lissina O, Johnson S, Ahmat N, Paesen G, Ploss K
J Mol Biol. 2007; 369(3):784-93.
PMID: 17445829
PMC: 2724154.
DOI: 10.1016/j.jmb.2007.03.064.
Co-inoculation of Borrelia afzelii with tick salivary gland extract influences distribution of immunocompetent cells in the skin and lymph nodes of mice.
Severinova J, Salat J, Krocova Z, Reznickova J, Demova H, Horka H
Folia Microbiol (Praha). 2006; 50(5):457-63.
PMID: 16475508
DOI: 10.1007/BF02931430.
Tick saliva in anti-tick immunity and pathogen transmission.
Kovar L
Folia Microbiol (Praha). 2004; 49(3):327-36.
PMID: 15259776
DOI: 10.1007/BF02931051.
Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis.
Francischetti I, Mather T, Ribeiro J
Biochem Biophys Res Commun. 2003; 305(4):869-75.
PMID: 12767911
PMC: 2903890.
DOI: 10.1016/s0006-291x(03)00857-x.
Saliva of the Lyme disease vector, Ixodes dammini, blocks cell activation by a nonprostaglandin E2-dependent mechanism.
Urioste S, HALL L, Telford 3rd S, Titus R
J Exp Med. 1994; 180(3):1077-85.
PMID: 8064226
PMC: 2191645.
DOI: 10.1084/jem.180.3.1077.
Role of saliva in tick/host interactions.
Ribeiro J
Exp Appl Acarol. 1989; 7(1):15-20.
PMID: 2667917
DOI: 10.1007/BF01200449.
Protein phosphorylation and control of tick salivary gland function.
Sauer J, McSwain J, TUCKER J, S Shelby K, Williams J, Essenberg R
Exp Appl Acarol. 1989; 7(1):81-94.
PMID: 2547551
DOI: 10.1007/BF01200455.