6.
Emeline A, Furubayashi Y, Zhang X, Jin M, Murakami T, Fujishima A
. Photoelectrochemical behavior of Nb-doped TiO2 electrodes. J Phys Chem B. 2005; 109(51):24441-4.
DOI: 10.1021/jp055090e.
View
7.
Yang M, Kim D, Jha H, Lee K, Paul J, Schmuki P
. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem Commun (Camb). 2010; 47(7):2032-4.
DOI: 10.1039/c0cc04993j.
View
8.
Luo J, Huang Y, Xu J, Sun J, Dargusch M, Hou C
. Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: Mechanical property, biocompatibility, and proteomics analysis. Mater Sci Eng C Mater Biol Appl. 2020; 114:110903.
DOI: 10.1016/j.msec.2020.110903.
View
9.
Maher S, Wijenayaka A, Lima-Marques L, Yang D, Atkins G, Losic D
. Advancing of Additive-Manufactured Titanium Implants with Bioinspired Micro- to Nanotopographies. ACS Biomater Sci Eng. 2021; 7(2):441-450.
DOI: 10.1021/acsbiomaterials.0c01210.
View
10.
Ghicov A, Aldabergenova S, Tsuchyia H, Schmuki P
. TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. Angew Chem Int Ed Engl. 2006; 45(42):6993-6.
DOI: 10.1002/anie.200601957.
View
11.
Shrestha N, Nah Y, Tsuchiya H, Schmuki P
. Self-organized nano-tubes of TiO2-MoO3 with enhanced electrochromic properties. Chem Commun (Camb). 2009; (15):2008-10.
DOI: 10.1039/b820953g.
View
12.
Ben Boubaker H, Laheurte P, Le Coz G, Biriaie S, Didier P, Lohmuller P
. Impact of the Loading Conditions and the Building Directions on the Mechanical Behavior of Biomedical -Titanium Alloy Produced In Situ by Laser-Based Powder Bed Fusion. Materials (Basel). 2022; 15(2).
PMC: 8779565.
DOI: 10.3390/ma15020509.
View
13.
Qian X, Yang W, Gao S, Xiao J, Basu S, Yoshimura A
. Highly Selective, Defect-Induced Photocatalytic CO Reduction to Acetaldehyde by the Nb-Doped TiO Nanotube Array under Simulated Solar Illumination. ACS Appl Mater Interfaces. 2020; 12(50):55982-55993.
DOI: 10.1021/acsami.0c17174.
View
14.
Khimich M, Prosolov K, Mishurova T, Evsevleev S, Monforte X, Teuschl A
. Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects. Nanomaterials (Basel). 2021; 11(5).
PMC: 8145374.
DOI: 10.3390/nano11051159.
View
15.
Sopha H, Kashimbetova A, Hromadko L, Saldan I, celko L, Montufar E
. Anodic TiO Nanotubes on 3D-Printed Titanium Meshes for Photocatalytic Applications. Nano Lett. 2021; 21(20):8701-8706.
DOI: 10.1021/acs.nanolett.1c02815.
View
16.
Ren B, Wan Y, Liu C, Wang H, Yu M, Zhang X
. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Mater Sci Eng C Mater Biol Appl. 2020; 118:111505.
DOI: 10.1016/j.msec.2020.111505.
View
17.
Fan C, Chen C, Wang J, Fu X, Ren Z, Qian G
. Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Sci Rep. 2015; 5:11712.
PMC: 4488957.
DOI: 10.1038/srep11712.
View
18.
Bose S, Banerjee D, Shivaram A, Tarafder S, Bandyopadhyay A
. Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Mater Des. 2019; 151:102-112.
PMC: 6690623.
DOI: 10.1016/j.matdes.2018.04.049.
View
19.
Gulati K, Prideaux M, Kogawa M, Lima-Marques L, Atkins G, Findlay D
. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells. J Tissue Eng Regen Med. 2016; 11(12):3313-3325.
DOI: 10.1002/term.2239.
View
20.
Bi X, Du G, Kalam A, Sun D, Zhao W, Yu Y
. Constructing anatase TiO/Amorphous NbO heterostructures to enhance photocatalytic degradation of acetaminophen and nitrogen oxide. J Colloid Interface Sci. 2021; 601:346-354.
DOI: 10.1016/j.jcis.2021.05.120.
View