» Articles » PMID: 37415306

Guiding Model-driven Combination Dose Selection Using Multi-objective Synergy Optimization

Overview
Publisher Wiley
Specialty Pharmacology
Date 2023 Jul 7
PMID 37415306
Authors
Affiliations
Soon will be listed here.
Abstract

Despite the growing appreciation that the future of cancer treatment lies in combination therapies, finding the right drugs to combine and the optimal way to combine them remains a nontrivial task. Herein, we introduce the Multi-Objective Optimization of Combination Synergy - Dose Selection (MOOCS-DS) method for using drug synergy as a tool for guiding dose selection for a combination of preselected compounds. This method decouples synergy of potency (SoP) and synergy of efficacy (SoE) and identifies Pareto optimal solutions in a multi-objective synergy space. Using a toy combination therapy model, we explore properties of the MOOCS-DS algorithm, including how optimal dose selection can be influenced by the metric used to define SoP and SoE. We also demonstrate the potential of our approach to guide dose and schedule selection using a model fit to preclinical data of the combination of the PD-1 checkpoint inhibitor pembrolizumab and the anti-angiogenic drug bevacizumab on two lung cancer cell lines. The identification of optimally synergistic combination doses has the potential to inform preclinical experimental design and improve the success rates of combination therapies. Jel classificationDose Finding in Oncology.

Citing Articles

Improving neuroendocrine tumor treatments with mathematical modeling: lessons from other endocrine cancers.

Metzcar J, Guenter R, Wang Y, Baker K, Lines K Endocr Oncol. 2025; 5(1):e240025.

PMID: 39949335 PMC: 11825163. DOI: 10.1530/EO-24-0025.


Mitigating non-genetic resistance to checkpoint inhibition based on multiple states of immune exhaustion.

Kareva I, Gevertz J NPJ Syst Biol Appl. 2024; 10(1):14.

PMID: 38336968 PMC: 10858190. DOI: 10.1038/s41540-024-00336-6.


Role of pharmacometrics and systems pharmacology in facilitating efficient dose optimization in oncology.

Jayachandran P, Desikan R, Krishnaswami S, Hennig S CPT Pharmacometrics Syst Pharmacol. 2023; 12(11):1569-1572.

PMID: 37849052 PMC: 10681474. DOI: 10.1002/psp4.13066.


Guiding model-driven combination dose selection using multi-objective synergy optimization.

Gevertz J, Kareva I CPT Pharmacometrics Syst Pharmacol. 2023; 12(11):1698-1713.

PMID: 37415306 PMC: 10681518. DOI: 10.1002/psp4.12997.

References
1.
Koch G, Schropp J, Jusko W . Assessment of non-linear combination effect terms for drug-drug interactions. J Pharmacokinet Pharmacodyn. 2016; 43(5):461-79. PMC: 5439368. DOI: 10.1007/s10928-016-9490-0. View

2.
Moon H . FDA initiatives to support dose optimization in oncology drug development: the less may be the better. Transl Clin Pharmacol. 2022; 30(2):71-74. PMC: 9253446. DOI: 10.12793/tcp.2022.30.e9. View

3.
Lederer S, Dijkstra T, Heskes T . Additive Dose Response Models: Explicit Formulation and the Loewe Additivity Consistency Condition. Front Pharmacol. 2018; 9:31. PMC: 5808155. DOI: 10.3389/fphar.2018.00031. View

4.
Palmer A, Sorger P . Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell. 2017; 171(7):1678-1691.e13. PMC: 5741091. DOI: 10.1016/j.cell.2017.11.009. View

5.
Banavali S, Pasquier E, Andre N . Targeted therapy with propranolol and metronomic chemotherapy combination: sustained complete response of a relapsing metastatic angiosarcoma. Ecancermedicalscience. 2015; 9:499. PMC: 4303616. DOI: 10.3332/ecancer.2015.499. View