S2P Intramembrane Protease RseP Degrades Small Membrane Proteins and Suppresses the Cytotoxicity of Intrinsic Toxin HokB
Overview
Authors
Affiliations
The site2protease (S2P) family of intramembrane proteases (IMPs) is conserved in all kingdoms of life and cleaves transmembrane proteins within the membrane to regulate and maintain various cellular activities. RseP, an S2P peptidase, is involved in the regulation of gene expression through the regulated cleavage of the two target membrane proteins (RseA and FecR) and in membrane quality control through the proteolytic elimination of remnant signal peptides. RseP is expected to have additional substrates and to be involved in other cellular processes. Recent studies have shown that cells express small membrane proteins (SMPs; single-spanning membrane proteins of approximately 50-100 amino acid residues) with crucial cellular functions. However, little is known about their metabolism, which affects their functions. This study investigated the possible RseP-catalyzed cleavage of SMPs based on the apparent similarity of the sizes and structures of SMPs to those of remnant signal peptides. We screened SMPs cleaved by RseP and and identified 14 SMPs, including HokB, an endogenous toxin that induces persister formation, as potential substrates. We demonstrated that RseP suppresses the cytotoxicity and biological functions of HokB. The identification of several SMPs as novel potential substrates of RseP provides a clue to a comprehensive understanding of the cellular roles of RseP and other S2P peptidases and highlights a novel aspect of the regulation of SMPs. IMPORTANCE Membrane proteins play an important role in cell activity and survival. Thus, understanding their dynamics, including proteolytic degradation, is crucial. RseP, an S2P family intramembrane protease, cleaves membrane proteins to regulate gene expression in response to environmental changes and to maintain membrane quality. To identify novel substrates of RseP, we screened small membrane proteins (SMPs), a group of proteins that have recently been shown to have diverse cellular functions, and identified 14 potential substrates. We also showed that RseP suppresses the cytotoxicity of the intrinsic toxin, HokB, an SMP that has been reported to induce persister cell formation, by degrading it. These findings provide new insights into the cellular roles of S2P peptidases and the functional regulation of SMPs.
Cryo-EM structure of the bacterial intramembrane metalloprotease RseP in the substrate-bound state.
Asahi K, Hirose M, Aruga R, Shimizu Y, Tajiri M, Tanaka T Sci Adv. 2025; 11(9):eadu0925.
PMID: 40009668 PMC: 11864173. DOI: 10.1126/sciadv.adu0925.
Maciag-Dorszynska M, Olszewski P, Karczewska M, Boss L Front Microbiol. 2025; 15:1528825.
PMID: 39895937 PMC: 11783221. DOI: 10.3389/fmicb.2024.1528825.