» Articles » PMID: 37409487

Correlating Metal Redox Potentials to Co(III)K(I) Catalyst Performances in Carbon Dioxide and Propene Oxide Ring Opening Copolymerization

Overview
Specialty Chemistry
Date 2023 Jul 6
PMID 37409487
Authors
Affiliations
Soon will be listed here.
Abstract

Carbon dioxide copolymerization is a front-runner CO utilization strategy but its viability depends on improving the catalysis. So far, catalyst structure-performance correlations have not been straightforward, limiting the ability to predict how to improve both catalytic activity and selectivity. Here, a simple measure of a catalyst ground-state parameter, metal reduction potential, directly correlates with both polymerization activity and selectivity. It is applied to compare performances of 6 new heterodinuclear Co(III)K(I) catalysts for propene oxide (PO)/CO ring opening copolymerization (ROCOP) producing poly(propene carbonate) (PPC). The best catalyst shows an excellent turnover frequency of 389 h and high PPC selectivity of >99 % (50 °C, 20 bar, 0.025 mol% catalyst). As demonstration of its utility, neither DFT calculations nor ligand Hammett parameter analyses are viable predictors. It is proposed that the cobalt redox potential informs upon the active site electron density with a more electron rich cobalt centre showing better performances. The method may be widely applicable and is recommended to guide future catalyst discovery for other (co)polymerizations and carbon dioxide utilizations.

Citing Articles

Sustainable, Recyclable, and Bench-Stable Catalytic System for Synthesis of Poly(ester--carbonate).

Jia Y, Li B, Sun Y, Hu C, Li X, Liu S Chem Bio Eng. 2025; 1(6):559-567.

PMID: 39974603 PMC: 11835286. DOI: 10.1021/cbe.4c00064.


Synergic Catalysis: the Importance of Intermetallic Separation in Co(III)K(I) Catalysts for Ring Opening Copolymerizations.

Fiorentini F, Eisenhardt K, Deacy A, Williams C J Am Chem Soc. 2024; 146(33):23517-23528.

PMID: 39120158 PMC: 11345820. DOI: 10.1021/jacs.4c07405.


Quantifying CO Insertion Equilibria for Low-Pressure Propene Oxide and Carbon Dioxide Ring Opening Copolymerization Catalysts.

Eisenhardt K, Fiorentini F, Lindeboom W, Williams C J Am Chem Soc. 2024; 146(15):10451-10464.

PMID: 38589774 PMC: 11027146. DOI: 10.1021/jacs.3c13959.


High Molar Mass Polycarbonates as Closed-Loop Recyclable Thermoplastics.

Rosetto G, Vidal F, McGuire T, Kerr R, Williams C J Am Chem Soc. 2024; 146(12):8381-8393.

PMID: 38484170 PMC: 10979403. DOI: 10.1021/jacs.3c14170.


Correlating Metal Redox Potentials to Co(III)K(I) Catalyst Performances in Carbon Dioxide and Propene Oxide Ring Opening Copolymerization.

Lindeboom W, Deacy A, Phanopoulos A, Buchard A, Williams C Angew Chem Int Ed Engl. 2023; 62(37):e202308378.

PMID: 37409487 PMC: 10952574. DOI: 10.1002/anie.202308378.

References
1.
Lu X, Shi L, Wang Y, Zhang R, Zhang Y, Peng X . Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J Am Chem Soc. 2006; 128(5):1664-74. DOI: 10.1021/ja056383o. View

2.
Glendening E, Landis C, Weinhold F . NBO 6.0: natural bond orbital analysis program. J Comput Chem. 2013; 34(16):1429-37. DOI: 10.1002/jcc.23266. View

3.
Buchard A, Kember M, Sandeman K, Williams C . A bimetallic iron(III) catalyst for CO2/epoxide coupling. Chem Commun (Camb). 2010; 47(1):212-4. DOI: 10.1039/c0cc02205e. View

4.
Kong R, Crimmin M . Chemoselective C-C σ-Bond Activation of the Most Stable Ring in Biphenylene*. Angew Chem Int Ed Engl. 2020; 60(5):2619-2623. DOI: 10.1002/anie.202011594. View

5.
Reis N, Deacy A, Rosetto G, Durr C, Williams C . Heterodinuclear Mg(II)M(II) (M=Cr, Mn, Fe, Co, Ni, Cu and Zn) Complexes for the Ring Opening Copolymerization of Carbon Dioxide/Epoxide and Anhydride/Epoxide. Chemistry. 2022; 28(14):e202104198. PMC: 9306976. DOI: 10.1002/chem.202104198. View