» Articles » PMID: 37400369

Liver-Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti-Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration

Overview
Journal Adv Sci (Weinh)
Date 2023 Jul 3
PMID 37400369
Authors
Affiliations
Soon will be listed here.
Abstract

Tissue regeneration is regulated by morphological clues of implants in bone defect repair. Engineered morphology can boost regenerative biocascades that conquer challenges such as material bioinertness and pathological microenvironments. Herein, a correlation between the liver extracellular skeleton morphology and the regenerative signaling, namely hepatocyte growth factor receptor (MET), is found to explain the mystery of rapid liver regeneration. Inspired by this unique structure, a biomimetic morphology is prepared on polyetherketoneketone (PEKK) via femtosecond laser etching and sulfonation. The morphology reproduces MET signaling in macrophages, causing positive immunoregulation and optimized osteogenesis. Moreover, the morphological clue activates an anti-inflammatory reserve (arginase-2) to translocate retrogradely from mitochondria to the cytoplasm due to the difference in spatial binding of heat shock protein 70. This translocation enhances oxidative respiration and complex II activity, reprogramming the metabolism of energy and arginine. The importance of MET signaling and arginase-2 in the anti-inflammatory repair of biomimetic scaffolds is also verified via chemical inhibition and gene knockout. Altogether, this study not only provides a novel biomimetic scaffold for osteoporotic bone defect repair that can simulate regenerative signals, but also reveals the significance and feasibility of strategies to mobilize anti-inflammatory reserves in bone regeneration.

Citing Articles

An axolotl limb regeneration-inspired strategy to enhance alveolar bone regeneration.

Liu R, Wang G, Ma L, Yang G, Lin S, Sun N Bioact Mater. 2025; 48:242-256.

PMID: 40046012 PMC: 11880770. DOI: 10.1016/j.bioactmat.2025.02.020.


Chirality-Induced Hydroxyapatite Manipulates Enantioselective Bone-Implant Interactions Toward Ameliorative Osteoporotic Osseointegration.

Yang L, Du J, Jin S, Yang S, Chen Z, Yu S Adv Sci (Weinh). 2024; 12(8):e2411602.

PMID: 39738981 PMC: 11848601. DOI: 10.1002/advs.202411602.


Research progresses on mitochondrial-targeted biomaterials for bone defect repair.

Wang S, Liu J, Zhou L, Xu H, Zhang D, Zhang X Regen Biomater. 2024; 11:rbae082.

PMID: 39055307 PMC: 11272180. DOI: 10.1093/rb/rbae082.


SIRT3 regulates cardiolipin biosynthesis in pressure overload-induced cardiac remodeling by PPARγ-mediated mechanism.

Liu L, Zheng X, Hai J, Zhang C, Ti Y, Chen T PLoS One. 2024; 19(4):e0301990.

PMID: 38625851 PMC: 11020683. DOI: 10.1371/journal.pone.0301990.


Liver-Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti-Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration.

Gu H, Zhu Y, Yang J, Jiang R, Deng Y, Li A Adv Sci (Weinh). 2023; 10(25):e2302136.

PMID: 37400369 PMC: 10477864. DOI: 10.1002/advs.202302136.

References
1.
Moore A, Coscia S, Simpson C, Ortega F, Wait E, Heddleston J . Actin cables and comet tails organize mitochondrial networks in mitosis. Nature. 2021; 591(7851):659-664. PMC: 7990722. DOI: 10.1038/s41586-021-03309-5. View

2.
Ji L, Zhao X, Zhang B, Kang L, Song W, Zhao B . Slc6a8-Mediated Creatine Uptake and Accumulation Reprogram Macrophage Polarization via Regulating Cytokine Responses. Immunity. 2019; 51(2):272-284.e7. DOI: 10.1016/j.immuni.2019.06.007. View

3.
Liesa M, Shirihai O . Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013; 17(4):491-506. PMC: 5967396. DOI: 10.1016/j.cmet.2013.03.002. View

4.
Han H, Kang G, Kim J, Choi B, Koo S . Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016; 48:e218. PMC: 4892876. DOI: 10.1038/emm.2015.122. View

5.
Koenig H, Goldstone A, Lu C . Polyamines regulate calcium fluxes in a rapid plasma membrane response. Nature. 1983; 305(5934):530-4. DOI: 10.1038/305530a0. View