» Articles » PMID: 37395922

T-cell Cholesterol Accumulation, Aging, and Atherosclerosis

Overview
Publisher Springer
Date 2023 Jul 3
PMID 37395922
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose Of Review: The majority of leukocytes in advanced human atherosclerotic plaques are T-cells. T-cell subsets exert pro- or anti-atherogenic effects largely via the cytokines they secrete. T cells (T) are anti-inflammatory, but may lose these properties during atherosclerosis, proposed to be downstream of cholesterol accumulation. Aged T-cells also accumulate cholesterol. The effects of T-cell cholesterol accumulation on T-cell fate and atherosclerosis are not uniform.

Recent Findings: T-cell cholesterol accumulation enhances differentiation into pro-atherogenic cytotoxic T-cells and boosts their killing capacity, depending on the localization and extent of cholesterol accumulation. Excessive cholesterol accumulation induces T-cell exhaustion or T-cell apoptosis, the latter decreasing atherosclerosis but impairing T-cell functionality in terms of killing capacity and proliferation. This may explain the compromised T-cell functionality in aged T-cells and T-cells from CVD patients. The extent of T-cell cholesterol accumulation and its cellular localization determine T-cell fate and downstream effects on atherosclerosis and T-cell functionality.

Citing Articles

Predicting cardiovascular disease and all-cause mortality using the lymphocyte-to-monocyte ratio: Insights from explainable machine learning models.

Wu J, Huang D, Li J, Yi J, Lei Y, Yin J Int J Cardiol Cardiovasc Risk Prev. 2025; 24:200372.

PMID: 39995422 PMC: 11849660. DOI: 10.1016/j.ijcrp.2025.200372.


Legumain deficiency halts atherogenesis by modulating T cell receptor signaling.

Xiang X, Zhang F, Nie L, Guo X, Qin M, Chen J Aging Cell. 2024; 24(2):e14391.

PMID: 39473192 PMC: 11822642. DOI: 10.1111/acel.14391.


Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors.

Gallo A, Le Goff W, Santos R, Fichtner I, Carugo S, Corsini A Eur J Clin Invest. 2024; 55(1):e14326.

PMID: 39370572 PMC: 11628670. DOI: 10.1111/eci.14326.


Research progress of SREBP and its role in the pathogenesis of autoimmune rheumatic diseases.

Xu X, Jin W, Chang R, Ding X Front Immunol. 2024; 15:1398921.

PMID: 39224584 PMC: 11366632. DOI: 10.3389/fimmu.2024.1398921.


Benefit delayed immunosenescence by regulating CD4T cells: A promising therapeutic target for aging-related diseases.

Xia T, Zhou Y, An J, Cui Z, Zhong X, Cui T Aging Cell. 2024; 23(10):e14317.

PMID: 39155409 PMC: 11464113. DOI: 10.1111/acel.14317.


References
1.
van Puijvelde G, Hauer A, de Vos P, van den Heuvel R, van Herwijnen M, van der Zee R . Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation. 2006; 114(18):1968-76. DOI: 10.1161/CIRCULATIONAHA.106.615609. View

2.
Li J, McArdle S, Gholami A, Kimura T, Wolf D, Gerhardt T . CCR5+T-bet+FoxP3+ Effector CD4 T Cells Drive Atherosclerosis. Circ Res. 2016; 118(10):1540-52. PMC: 4867125. DOI: 10.1161/CIRCRESAHA.116.308648. View

3.
Wilfahrt D, Philips R, Lama J, Kizerwetter M, Shapiro M, McCue S . Histone deacetylase 3 represses cholesterol efflux during CD4 T-cell activation. Elife. 2021; 10. PMC: 8639145. DOI: 10.7554/eLife.70978. View

4.
Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T . Immunomodulatory role of high-density lipoproteins: impact on immunosenescence. Age (Dordr). 2014; 36(5):9712. PMC: 4162887. DOI: 10.1007/s11357-014-9712-6. View

5.
Kimura T, Kobiyama K, Winkels H, Tse K, Miller J, Vassallo M . Regulatory CD4 T Cells Recognize Major Histocompatibility Complex Class II Molecule-Restricted Peptide Epitopes of Apolipoprotein B. Circulation. 2018; 138(11):1130-1143. PMC: 6160361. DOI: 10.1161/CIRCULATIONAHA.117.031420. View