» Articles » PMID: 37384148

Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease

Overview
Journal JACS Au
Specialty Chemistry
Date 2023 Jun 29
PMID 37384148
Authors
Affiliations
Soon will be listed here.
Abstract

The SARS-CoV-2 main protease (M) plays an essential role in the coronavirus lifecycle by catalyzing hydrolysis of the viral polyproteins at specific sites. M is the target of drugs, such as nirmatrelvir, though resistant mutants have emerged that threaten drug efficacy. Despite its importance, questions remain on the mechanism of how M binds its substrates. Here, we apply dynamical nonequilibrium molecular dynamics (D-NEMD) simulations to evaluate structural and dynamical responses of M to the presence and absence of a substrate. The results highlight communication between the M dimer subunits and identify networks, including some far from the active site, that link the active site with a known allosteric inhibition site, or which are associated with nirmatrelvir resistance. They imply that some mutations enable resistance by altering the allosteric behavior of M. More generally, the results show the utility of the D-NEMD technique for identifying functionally relevant allosteric sites and networks including those relevant to resistance.

Citing Articles

Computational Insights into Acrylamide Fragment Inhibition of SARS-CoV-2 Main Protease.

Chen P, Wu L, Qin B, Yao H, Xu D, Cui S Curr Issues Mol Biol. 2024; 46(11):12847-12865.

PMID: 39590359 PMC: 11592536. DOI: 10.3390/cimb46110765.


Allostery in homodimeric SARS-CoV-2 main protease.

Fornasier E, Fabbian S, Shehi H, Enderle J, Gatto B, Volpin D Commun Biol. 2024; 7(1):1435.

PMID: 39496839 PMC: 11535432. DOI: 10.1038/s42003-024-07138-w.


Dynamical responses predict a distal site that modulates activity in an antibiotic resistance enzyme.

Beer M, Oliveira A, Tooke C, Hinchliffe P, Tsz Yan Li A, Balega B Chem Sci. 2024; .

PMID: 39364073 PMC: 11443494. DOI: 10.1039/d4sc03295k.


Signal Propagation in the ATPase Domain of DNA Gyrase from Dynamical-Nonequilibrium Molecular Dynamics Simulations.

Kamsri B, Kamsri P, Punkvang A, Chimprasit A, Saparpakorn P, Hannongbua S Biochemistry. 2024; 63(11):1493-1504.

PMID: 38742407 PMC: 11154950. DOI: 10.1021/acs.biochem.4c00161.


Decrypting Allostery in Membrane-Bound K-Ras4B Using Complementary Approaches Based on Unbiased Molecular Dynamics Simulations.

Castelli M, Marchetti F, Osuna S, Oliveira A, Mulholland A, Serapian S J Am Chem Soc. 2023; 146(1):901-919.

PMID: 38116743 PMC: 10785808. DOI: 10.1021/jacs.3c11396.


References
1.
Oliveira A, Shoemark D, Rego Campello H, Wonnacott S, Gallagher T, Sessions R . Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure. 2019; 27(7):1171-1183.e3. DOI: 10.1016/j.str.2019.04.008. View

2.
Arafet K, Serrano-Aparicio N, Lodola A, Mulholland A, Gonzalez F, Swiderek K . Mechanism of inhibition of SARS-CoV-2 M by peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chem Sci. 2021; 12(4):1433-1444. PMC: 8179034. DOI: 10.1039/d0sc06195f. View

3.
Kneller D, Zhang Q, Coates L, Louis J, Kovalevsky A . Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography. IUCrJ. 2021; 8(Pt 6):973-979. PMC: 8562657. DOI: 10.1107/S2052252521010113. View

4.
Chan H, Moesser M, Walters R, Malla T, Twidale R, John T . Discovery of SARS-CoV-2 M peptide inhibitors from modelling substrate and ligand binding. Chem Sci. 2021; 12(41):13686-13703. PMC: 8549791. DOI: 10.1039/d1sc03628a. View

5.
Diaz N, Suarez D . Influence of charge configuration on substrate binding to SARS-CoV-2 main protease. Chem Commun (Camb). 2021; 57(43):5314-5317. DOI: 10.1039/d1cc01449h. View