» Articles » PMID: 37381631

InSitu Integrated Fabrication for Multi-Interface Stabilized and Highly Durable Polyaniline@Graphene Oxide/Polyether Ether Ketone Special Separation Membranes

Overview
Journal Adv Sci (Weinh)
Date 2023 Jun 29
PMID 37381631
Authors
Affiliations
Soon will be listed here.
Abstract

Special separation membranes are widely employed for separation and purification purposes under challenging operating conditions due to their low energy consumption, excellent solvent, and corrosion resistance. However, the development of membranes is limited by corrosion-resistant polymer substrates and precise interfacial separation layers. Herein, polyaniline (PANI) is employed to achieve insitu anchoring of multiple interfaces, resulting in the fabrication of polyaniline@graphene oxide/polyether ether ketone (PANI@GO/PEEK) membranes. Insitu growth of PANI achieves the adequate bonding of the PEEK substrate and GO separation interface, which solves the problem of solution processing of PEEK and the instability of GO layers. By bottom-up confined polymerization of aniline, it could control the pore size of the separation layer, correct defects, and anchor among polymer, nano-separation layer, and nano-sheet. The mechanism of membrane construction within the confined domain and micro-nano structure modulation is further explored. The membranes demonstrate exceptional stability realizing over 90% rejection in 2 m HCl, NaOH, and high temperatures. Additionally, -membranes exhibit remarkable durability after 240 days immersion and 100 h long-term operation, which display the methanol flux of 50.2 L m h and 92% rejection of AF (585 g mol ). This method substantially contributes to special separation membranes by offering a novel strategy.

Citing Articles

Optimized Polymeric Membranes for Water Treatment: Fabrication, Morphology, and Performance.

Kumar A, Chang D Polymers (Basel). 2024; 16(2).

PMID: 38257070 PMC: 10819000. DOI: 10.3390/polym16020271.


Diethylenetriamine-functionalized reduced graphene oxide having more amino groups for methylene blue removal.

Wang C, Zhou J, Chu L, Zhang M, Xu C, Liu J RSC Adv. 2024; 14(5):3280-3288.

PMID: 38249680 PMC: 10798002. DOI: 10.1039/d3ra08767k.


Poly(arylene ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review.

Wang M, Li L, Yan H, Liu X, Li K, Li Y Polymers (Basel). 2024; 15(23).

PMID: 38231952 PMC: 10707801. DOI: 10.3390/polym15234527.


InSitu Integrated Fabrication for Multi-Interface Stabilized and Highly Durable Polyaniline@Graphene Oxide/Polyether Ether Ketone Special Separation Membranes.

Lin Z, Zhong J, Sun R, Wei Y, Sun Z, Li W Adv Sci (Weinh). 2023; 10(25):e2302654.

PMID: 37381631 PMC: 10477839. DOI: 10.1002/advs.202302654.

References
1.
Lin Z, Cao N, Sun Z, Li W, Sun Y, Zhang H . Based On Confined Polymerization: In Situ Synthesis of PANI/PEEK Composite Film in One-Step. Adv Sci (Weinh). 2021; 9(1):e2103706. PMC: 8728828. DOI: 10.1002/advs.202103706. View

2.
Qian Y, Shang J, Liu D, Yang G, Wang X, Chen C . Enhanced Ion Sieving of Graphene Oxide Membranes via Surface Amine Functionalization. J Am Chem Soc. 2021; 143(13):5080-5090. DOI: 10.1021/jacs.1c00575. View

3.
Elimelech M, Phillip W . The future of seawater desalination: energy, technology, and the environment. Science. 2011; 333(6043):712-7. DOI: 10.1126/science.1200488. View

4.
Marchetti P, Jimenez Solomon M, Szekely G, Livingston A . Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev. 2014; 114(21):10735-806. DOI: 10.1021/cr500006j. View

5.
Andreeva D, Trushin M, Nikitina A, Costa M, Cherepanov P, Holwill M . Two-dimensional adaptive membranes with programmable water and ionic channels. Nat Nanotechnol. 2020; 16(2):174-180. DOI: 10.1038/s41565-020-00795-y. View