» Articles » PMID: 37353804

METTL3-mediated M6A Modification of SIRT1 MRNA Inhibits Progression of Endometriosis by Cellular Senescence Enhancing

Overview
Journal J Transl Med
Publisher Biomed Central
Date 2023 Jun 23
PMID 37353804
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Endometriosis (EMs), the ectopic planting of functional endometrium outside of the uterus, is a leading cause of infertility and pelvic pain. As a fundamental mRNA modification, N6-methyladenosine (m6A) participates in various pathological processes. However, the role of m6A RNA modification in endometriosis remains unclear. The present study explores METTL3-mediated m6A modification and the mechanisms involved in endometriosis.

Methods: The dominant m6A regulators in EMs were analysed using RT‒PCR. Candidate targets and possible mechanisms of METTL3 were assessed by m6A-mRNA epitranscriptomic microarray and RNA sequencing. A primary ESCs model was employed to verify the effect of METTL3 on m6A modification of SIRT1 mRNA, and the mechanism was elucidated by RT‒PCR, Western blotting, MeRIP, and RIP assays. CCK-8 viability assays, Transwell invasion assays, EdU proliferation assays, wound healing migration assays, and senescence-associated β-galactosidase staining were performed to illuminate the potential biological mechanism of METTL3 and SIRT1 in ESCs in vitro. An in vivo PgrCre/ + METTL3 -/- female homozygous mouse model and a nude mouse xenograft model were employed to further investigate the physiologic consequences of METTL3-mediated m6A alteration on EMs.

Results: Our data show that decreased METTL3 expression significantly downregulates m6A RNA methylation levels in ESCs. Silencing m6A modifications mediated by METTL3 accelerates ESCs viability, proliferation, migration, and invasion in vitro. The m6A reader protein YTHDF2 binds to m6A modifications to induce the degradation of SIRT1 mRNA. SIRT1/FOXO3a signalling pathway activation is subsequently inhibited, promoting the cellular senescence of ESCs and inhibiting the ectopic implantation of ESCs in vitro and in vivo.

Conclusions: Our findings demonstrate that METTL3-mediated m6A methylation epigenetically regulates the ectopic implantation of ESCs, resulting in the progression of endometriosis. Our study establishes METTL3-YTHDF2-SIRT1/FOXO3a as a critical axis and potential mechanism in endometriosis.

Citing Articles

A novel mechanism of FTO modulating the progression of endometriosis through mediating the m6A methylation of GEF-H1 in a YTHDF1-dependent manner.

Ding X, Zhang H, Chen J, Yang M, Huang Z, Lei Y Mol Med. 2025; 31(1):78.

PMID: 40000966 PMC: 11863856. DOI: 10.1186/s10020-025-01130-8.


Emerging roles of mitochondrial sirtuin SIRT5 in succinylation modification and cancer development.

Ke Z, Shen K, Wang L, Xu H, Pan X, Qian Z Front Immunol. 2025; 16:1531246.

PMID: 39944690 PMC: 11814216. DOI: 10.3389/fimmu.2025.1531246.


Association between METTL14 gene polymorphisms and risk of ovarian endometriosis.

Zhou Z, Jie Y, Hu X, Chen G, Bao Y, OuYang Z Front Genet. 2025; 15():1460216.

PMID: 39831202 PMC: 11739277. DOI: 10.3389/fgene.2024.1460216.


METTL3 and IGF2BP2 coordinately regulate FOSL1 mRNA via m6A modification, suppressing trophoblast invasion and contributing to fetal growth restriction.

Chen R, Wang T, Tong H, Zhang X, Ruan J, Qi H FASEB J. 2024; 38(22):e70154.

PMID: 39565355 PMC: 11578174. DOI: 10.1096/fj.202401665R.


Melatonin Regulates the Expression of VEGF and HOXA10 in Bovine Endometrial Epithelial Cells through the SIRT1/PI3K/AKT Pathway.

Li Q, Tang Y, Chen Y, Li B, Wang H, Liu S Animals (Basel). 2024; 14(19).

PMID: 39409719 PMC: 11475476. DOI: 10.3390/ani14192771.


References
1.
Xu S, Wu W, Huang H, Huang R, Xie L, Su A . The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Complement of the canonical p53/p21 pathway. Aging Cell. 2019; 18(3):e12918. PMC: 6516184. DOI: 10.1111/acel.12918. View

2.
Li X, Xiong W, Long X, Dai X, Peng Y, Xu Y . Inhibition of METTL3/m6A/miR126 promotes the migration and invasion of endometrial stromal cells in endometriosis†. Biol Reprod. 2021; 105(5):1221-1233. PMC: 10308507. DOI: 10.1093/biolre/ioab152. View

3.
Li J, Xie H, Ying Y, Chen H, Yan H, He L . YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020; 19(1):152. PMC: 7599101. DOI: 10.1186/s12943-020-01267-6. View

4.
Valentijn A, Saretzki G, Tempest N, Critchley H, Hapangama D . Human endometrial epithelial telomerase is important for epithelial proliferation and glandular formation with potential implications in endometriosis. Hum Reprod. 2015; 30(12):2816-28. DOI: 10.1093/humrep/dev267. View

5.
. Diagnosis and management of endometriosis: summary of NICE guidance. BMJ. 2017; 358:j4227. DOI: 10.1136/bmj.j4227. View