Canonical Correlation Analysis in High Dimensions with Structured Regularization
Overview
Affiliations
Canonical correlation analysis (CCA) is a technique for measuring the association between two multivariate data matrices. A regularized modification of canonical correlation analysis (RCCA) which imposes an penalty on the CCA coefficients is widely used in applications with high-dimensional data. One limitation of such regularization is that it ignores any data structure, treating all the features equally, which can be ill-suited for some applications. In this article we introduce several approaches to regularizing CCA that take the underlying data structure into account. In particular, the proposed group regularized canonical correlation analysis (GRCCA) is useful when the variables are correlated in groups. We illustrate some computational strategies to avoid excessive computations with regularized CCA in high dimensions. We demonstrate the application of these methods in our motivating application from neuroscience, as well as in a small simulation example.
Smith R, Mihalik A, Akula N, Auluck P, Marenco S, Raznahan A bioRxiv. 2025; .
PMID: 39990369 PMC: 11844519. DOI: 10.1101/2025.02.14.638357.
Liang Q, Zhou Z, Chen S, Lin S, Lin X, Li Y Transl Psychiatry. 2025; 15(1):33.
PMID: 39875399 PMC: 11775246. DOI: 10.1038/s41398-025-03238-1.
Predicting Outcomes of Preterm Neonates Post Intraventricular Hemorrhage.
Vignolle G, Bauerstatter P, Schonthaler S, Nohammer C, Olischar M, Berger A Int J Mol Sci. 2024; 25(19).
PMID: 39408633 PMC: 11477204. DOI: 10.3390/ijms251910304.
Dyadic and Individual Variation in 24-Hour Heart Rates of Cancer Patients and Their Caregivers.
Kumar R, Fu J, Ortiz B, Cao X, Shedden K, Choi S Bioengineering (Basel). 2024; 11(1).
PMID: 38247972 PMC: 10813060. DOI: 10.3390/bioengineering11010095.
Tozzi L, Tuzhilina E, Glasser M, Hastie T, Williams L Neuroimage. 2021; 237:118137.
PMID: 33951512 PMC: 8536403. DOI: 10.1016/j.neuroimage.2021.118137.