» Articles » PMID: 37278533

Structural Basis of a Bi-functional Malonyl-CoA Reductase (MCR) from the Photosynthetic Green Non-sulfur Bacterium

Overview
Journal mBio
Specialty Microbiology
Date 2023 Jun 6
PMID 37278533
Authors
Affiliations
Soon will be listed here.
Abstract

Malonyl-CoA reductase (MCR) is a NADPH-dependent bi-functional enzyme that performs alcohol dehydrogenase and aldehyde dehydrogenase (CoA-acylating) activities in the N- and C-terminal fragments, respectively. It catalyzes the two-step reduction of malonyl-CoA to 3-hydroxypropionate (3-HP), a key reaction in the autotrophic CO fixation cycles of green non-sulfur bacteria and the archaea . However, the structural basis underlying substrate selection, coordination, and the subsequent catalytic reactions of full-length MCR is largely unknown. For the first time, we here determined the structure of full-length MCR from the photosynthetic green non-sulfur bacterium (MCR) at 3.35 Å resolution. Furthermore, we determined the crystal structures of the N- and C-terminal fragments bound with reaction intermediates NADP and malonate semialdehyde (MSA) at 2.0 Å and 2.3 Å, respectively, and elucidated the catalytic mechanisms using a combination of molecular dynamics simulations and enzymatic analyses. Full-length MCR was a homodimer of two cross-interlocked subunits, each containing four tandemly arranged short-chain dehydrogenase/reductase (SDR) domains. Only the catalytic domains SDR1 and SDR3 incorporated additional secondary structures that changed with NADP-MSA binding. The substrate, malonyl-CoA, was immobilized in the substrate-binding pocket of SDR3 through coordination with Arg1164 and Arg799 of SDR4 and the extra domain, respectively. Malonyl-CoA was successively reduced through protonation by the Tyr743-Arg746 pair in SDR3 and the catalytic triad (Thr165-Tyr178-Lys182) in SDR1 after nucleophilic attack from NADPH hydrides. IMPORTANCE The bi-functional MCR catalyzes NADPH-dependent reduction of malonyl-CoA to 3-HP, an important metabolic intermediate and platform chemical, from biomass. The individual MCR-N and MCR-C fragments, which contain the alcohol dehydrogenase and aldehyde dehydrogenase (CoA-acylating) activities, respectively, have previously been structurally investigated and reconstructed into a malonyl-CoA pathway for the biosynthetic production of 3-HP. However, no structural information for full-length MCR has been available to illustrate the catalytic mechanism of this enzyme, which greatly limits our capacity to increase the 3-HP yield of recombinant strains. Here, we report the cryo-electron microscopy structure of full-length MCR for the first time and elucidate the mechanisms underlying substrate selection, coordination, and catalysis in the bi-functional MCR. These findings provide a structural and mechanistic basis for enzyme engineering and biosynthetic applications of the 3-HP carbon fixation pathways.

Citing Articles

Curcumin Inhibits α-Synuclein Aggregation by Acting on Liquid-Liquid Phase Transition.

Li J, Jiang Z, Cao S, Zhang M, Wang L, Liu J Foods. 2024; 13(9).

PMID: 38731658 PMC: 11083653. DOI: 10.3390/foods13091287.

References
1.
. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994; 50(Pt 5):760-3. DOI: 10.1107/S0907444994003112. View

2.
HOLMBERG N, Ryde U, Bulow L . Redesign of the coenzyme specificity in L-lactate dehydrogenase from bacillus stearothermophilus using site-directed mutagenesis and media engineering. Protein Eng. 1999; 12(10):851-6. DOI: 10.1093/protein/12.10.851. View

3.
Maier J, Martinez C, Kasavajhala K, Wickstrom L, Hauser K, Simmerling C . ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput. 2015; 11(8):3696-713. PMC: 4821407. DOI: 10.1021/acs.jctc.5b00255. View

4.
Liu C, Ding Y, Xian M, Liu M, Liu H, Ma Q . Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis. Crit Rev Biotechnol. 2017; 37(7):933-941. DOI: 10.1080/07388551.2016.1272093. View

5.
Pettersen E, Goddard T, Huang C, Meng E, Couch G, Croll T . UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2020; 30(1):70-82. PMC: 7737788. DOI: 10.1002/pro.3943. View