» Articles » PMID: 37185503

Applications and Tuning Strategies for Transcription Factor-Based Metabolite Biosensors

Overview
Specialty Biotechnology
Date 2023 May 15
PMID 37185503
Authors
Affiliations
Soon will be listed here.
Abstract

Transcription factor (TF)-based biosensors are widely used for the detection of metabolites and the regulation of cellular pathways in response to metabolites. Several challenges hinder the direct application of TF-based sensors to new hosts or metabolic pathways, which often requires extensive tuning to achieve the optimal performance. These tuning strategies can involve transcriptional or translational control depending on the parameter of interest. In this review, we highlight recent strategies for engineering TF-based biosensors to obtain the desired performance and discuss additional design considerations that may influence a biosensor's performance. We also examine applications of these sensors and suggest important areas for further work to continue the advancement of small-molecule biosensors.

Citing Articles

Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors.

De Paepe B, De Mey M ACS Synth Biol. 2024; 14(1):72-86.

PMID: 39709556 PMC: 11745168. DOI: 10.1021/acssynbio.4c00689.


Insights into the regulatory mechanisms and application prospects of the transcription factor Cra.

Huang Y, Jia K, Zhao W, Zhu L Appl Environ Microbiol. 2024; 90(11):e0122824.

PMID: 39494897 PMC: 11577769. DOI: 10.1128/aem.01228-24.


AI-Assisted Rational Design and Activity Prediction of Biological Elements for Optimizing Transcription-Factor-Based Biosensors.

Ding N, Yuan Z, Ma Z, Wu Y, Yin L Molecules. 2024; 29(15).

PMID: 39124917 PMC: 11313831. DOI: 10.3390/molecules29153512.


Directed Evolution of Protein-Based Sensors for Anaerobic Biological Activation of Methane.

Bahrami Moghadam E, Nguyen N, Wang Y, Cirino P Biosensors (Basel). 2024; 14(7).

PMID: 39056601 PMC: 11275114. DOI: 10.3390/bios14070325.


Enhancing glucaric acid production from -inositol in by eliminating cell-to-cell variation.

Ding N, Sun L, Zhou X, Zhang L, Deng Y, Yin L Appl Environ Microbiol. 2024; 90(6):e0014924.

PMID: 38808978 PMC: 11218621. DOI: 10.1128/aem.00149-24.


References
1.
Hanko E, Sherlock G, Minton N, Malys N . Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production. Metab Eng. 2022; 72:24-34. DOI: 10.1016/j.ymben.2022.02.003. View

2.
Rogers J, Church G . Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci U S A. 2016; 113(9):2388-93. PMC: 4780645. DOI: 10.1073/pnas.1600375113. View

3.
Moser F, Borujeni A, Ghodasara A, Cameron E, Park Y, Voigt C . Dynamic control of endogenous metabolism with combinatorial logic circuits. Mol Syst Biol. 2018; 14(11):e8605. PMC: 6263354. DOI: 10.15252/msb.20188605. View

4.
Schmitz A, Hartline C, Zhang F . Engineering Microbial Metabolite Dynamics and Heterogeneity. Biotechnol J. 2017; 12(10). DOI: 10.1002/biot.201700422. View

5.
Collins C, Leadbetter J, Arnold F . Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat Biotechnol. 2006; 24(6):708-12. DOI: 10.1038/nbt1209. View