» Articles » PMID: 37185250

Individually Addressable and Spectrally Programmable Artificial Atoms in Silicon Photonics

Overview
Journal Nat Commun
Specialty Biology
Date 2023 May 15
PMID 37185250
Authors
Affiliations
Soon will be listed here.
Abstract

A central goal for quantum technologies is to develop platforms for precise and scalable control of individually addressable artificial atoms with efficient optical interfaces. Color centers in silicon, such as the recently-isolated carbon-related G-center, exhibit emission directly into the telecommunications O-band and can leverage the maturity of silicon-on-insulator photonics. We demonstrate the generation, individual addressing, and spectral trimming of G-center artificial atoms in a silicon-on-insulator photonic integrated circuit platform. Focusing on the neutral charge state emission at 1278 nm, we observe waveguide-coupled single photon emission with narrow inhomogeneous distribution with standard deviation of 1.1 nm, excited state lifetime of 8.3 ± 0.7 ns, and no degradation after over a month of operation. In addition, we introduce a technique for optical trimming of spectral transitions up to 300 pm (55 GHz) and local deactivation of single artificial atoms. This non-volatile spectral programming enables alignment of quantum emitters into 25 GHz telecommunication grid channels. Our demonstration opens the path to quantum information processing based on implantable artificial atoms in very large scale integrated photonics.

Citing Articles

All-Epitaxial Self-Assembly of Silicon Color Centers Confined Within Sub-Nanometer Thin Layers Using Ultra-Low Temperature Epitaxy.

Aberl J, Prado Navarrete E, Karaman M, Enriquez D, Wilflingseder C, Salomon A Adv Mater. 2024; 36(48):e2408424.

PMID: 39394979 PMC: 11602677. DOI: 10.1002/adma.202408424.


Cavity-enhanced single artificial atoms in silicon.

Saggio V, Errando-Herranz C, Gyger S, Panuski C, Prabhu M, De Santis L Nat Commun. 2024; 15(1):5296.

PMID: 38906895 PMC: 11192735. DOI: 10.1038/s41467-024-49302-0.


Electrical manipulation of telecom color centers in silicon.

Day A, Sutula M, Dietz J, Raun A, Sukachev D, Bhaskar M Nat Commun. 2024; 15(1):4722.

PMID: 38830869 PMC: 11148098. DOI: 10.1038/s41467-024-48968-w.


Heterogeneous integration of spin-photon interfaces with a CMOS platform.

Li L, De Santis L, Harris I, Chen K, Gao Y, Christen I Nature. 2024; 630(8015):70-76.

PMID: 38811730 DOI: 10.1038/s41586-024-07371-7.


Programmable quantum emitter formation in silicon.

Jhuria K, Ivanov V, Polley D, Zhiyenbayev Y, Liu W, Persaud A Nat Commun. 2024; 15(1):4497.

PMID: 38802357 PMC: 11130136. DOI: 10.1038/s41467-024-48714-2.


References
1.
Gyger S, Zichi J, Schweickert L, Elshaari A, Steinhauer S, Covre da Silva S . Reconfigurable photonics with on-chip single-photon detectors. Nat Commun. 2021; 12(1):1408. PMC: 7930283. DOI: 10.1038/s41467-021-21624-3. View

2.
Wolfowicz G, Anderson C, Diler B, Poluektov O, Heremans F, Awschalom D . Vanadium spin qubits as telecom quantum emitters in silicon carbide. Sci Adv. 2020; 6(18):eaaz1192. PMC: 7195180. DOI: 10.1126/sciadv.aaz1192. View

3.
Wan N, Lu T, Chen K, Walsh M, Trusheim M, De Santis L . Large-scale integration of artificial atoms in hybrid photonic circuits. Nature. 2020; 583(7815):226-231. DOI: 10.1038/s41586-020-2441-3. View

4.
Anderson C, Bourassa A, Miao K, Wolfowicz G, Mintun P, Crook A . Electrical and optical control of single spins integrated in scalable semiconductor devices. Science. 2019; 366(6470):1225-1230. DOI: 10.1126/science.aax9406. View

5.
Tyryshkin A, Tojo S, Morton J, Riemann H, Abrosimov N, Becker P . Electron spin coherence exceeding seconds in high-purity silicon. Nat Mater. 2011; 11(2):143-7. DOI: 10.1038/nmat3182. View