Broad Diversity of Near-Infrared Single-Photon Emitters in Silicon
Overview
Authors
Affiliations
We report the detection of individual emitters in silicon belonging to seven different families of optically active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the 1.1-1.55 μm range, spanning the O and C telecom bands. We analyze their photoluminescence spectra, dipolar emissions, and optical relaxation dynamics at 10 K. For a specific family, we show a constant emission intensity at saturation from 10 K to temperatures well above the 77 K liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these individual artificial atoms are promising systems to investigate for Si-based quantum technologies.
Optical single-shot readout of spin qubits in silicon.
Gritsch A, Ulanowski A, Pforr J, Reiserer A Nat Commun. 2025; 16(1):64.
PMID: 39747103 PMC: 11695859. DOI: 10.1038/s41467-024-55552-9.
Aberl J, Prado Navarrete E, Karaman M, Enriquez D, Wilflingseder C, Salomon A Adv Mater. 2024; 36(48):e2408424.
PMID: 39394979 PMC: 11602677. DOI: 10.1002/adma.202408424.
Indistinguishable photons from an artificial atom in silicon photonics.
Komza L, Samutpraphoot P, Odeh M, Tang Y, Mathew M, Chang J Nat Commun. 2024; 15(1):6920.
PMID: 39134534 PMC: 11319600. DOI: 10.1038/s41467-024-51265-1.
Cavity-enhanced single artificial atoms in silicon.
Saggio V, Errando-Herranz C, Gyger S, Panuski C, Prabhu M, De Santis L Nat Commun. 2024; 15(1):5296.
PMID: 38906895 PMC: 11192735. DOI: 10.1038/s41467-024-49302-0.
Electrical manipulation of telecom color centers in silicon.
Day A, Sutula M, Dietz J, Raun A, Sukachev D, Bhaskar M Nat Commun. 2024; 15(1):4722.
PMID: 38830869 PMC: 11148098. DOI: 10.1038/s41467-024-48968-w.