» Articles » PMID: 37184211

Tissues and Mechanisms Associated with Verticillium Wilt Resistance in Tomato Using Bi-grafted Near-isogenic Lines

Overview
Journal J Exp Bot
Specialty Biology
Date 2023 May 15
PMID 37184211
Authors
Affiliations
Soon will be listed here.
Abstract

Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resistance. Here, we created bi-grafted plants with near-isogenic lines (NILs) exhibiting (Ve1) or lacking (ve1) resistance to V. dahliae race 1. Ten days after inoculation, scion and rootstock tissues were subjected to differential gene expression and co-expression network analyses. Symptoms only developed in susceptible scions regardless of the rootstock. Infection caused more dramatic alteration of tomato gene expression in susceptible compared with resistant tissues, including pathogen receptor, signaling pathway, pathogenesis-related protein, and cell wall modification genes. Differences were observed between scions and rootstocks, primarily related to physiological processes in these tissues. Gene expression in scions was influenced by the rootstock genotype. A few genes were associated with the Ve1 genotype, which was independent of infection or tissue type. Several were physically clustered, some near the Ve1 locus on chromosome 9. Transcripts mapped to V. dahliae were dominated by secreted candidate effector proteins. These findings advance knowledge of molecular mechanisms underlying the tomato-V. dahliae interaction.

Citing Articles

Microbiome-Mediated Strategies to Manage Major Soil-Borne Diseases of Tomato.

Meshram S, Adhikari T Plants (Basel). 2024; 13(3).

PMID: 38337897 PMC: 10856849. DOI: 10.3390/plants13030364.

References
1.
Nazar R, Xu X, Blaya Fernandez J, Shittu H, Kurosky A, Robb J . Defence cascade in Verticillium-infected grafted tomato. Plant Signal Behav. 2018; 13(6):e1475807. PMC: 6207417. DOI: 10.1080/15592324.2018.1475807. View

2.
Xiong D, Wang Y, Tian C . Transcriptomic profiles of the smoke tree wilt fungus Verticillium dahliae under nutrient starvation stresses. Mol Genet Genomics. 2015; 290(5):1963-77. DOI: 10.1007/s00438-015-1052-4. View

3.
Ding Y, Gardiner D, Powell J, Colgrave M, Park R, Kazan K . Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. Plant Cell Environ. 2021; 44(12):3526-3544. DOI: 10.1111/pce.14195. View

4.
Chuberre C, Plancot B, Driouich A, Moore J, Bardor M, Gugi B . Plant Immunity Is Compartmentalized and Specialized in Roots. Front Plant Sci. 2018; 9:1692. PMC: 6279857. DOI: 10.3389/fpls.2018.01692. View

5.
Liu X, Inoue H, Tang X, Tan Y, Xu X, Wang C . Rice is Induced during Blast Infection in a Salicylic Acid-Dependent Manner, and Promotes Blast Fungus Resistance. Int J Mol Sci. 2020; 21(4). PMC: 7073101. DOI: 10.3390/ijms21041443. View