» Articles » PMID: 37183778

Vespa: Integrated Applications for RF Pulse Design, Spectral Simulation and MRS Data Analysis

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 2023 May 15
PMID 37183778
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: The Vespa package (Versatile Simulation, Pulses, and Analysis) is described and demonstrated. It provides workflows for developing and optimizing linear combination modeling (LCM) fitting for H MRS data using intuitive graphical user interface interfaces for RF pulse design, spectral simulation, and MRS data analysis. Command line interfaces for embedding workflows in MR manufacturer platforms and utilities for synthetic dataset creation are included. Complete provenance is maintained for all steps in workflows.

Theory And Methods: Vespa is written in Python for compatibility across operating systems. It embeds the PyGAMMA spectral simulation library for spectral simulation. Multiprocessing methods accelerate processing and visualization. Applications use the Vespa database for results storage and cross-application access. Three projects demonstrate pulse, sequence, simulation, and data analysis workflows: (1) short TE semi-LASER single-voxel spectroscopy (SVS) LCM fitting, (2) optimizing MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) flip angle and LCM fitting, and (3) creating a synthetic short TE dataset.

Results: The LCM workflows for in vivo basis set creation and spectral analysis showed reasonable results for both the short TE semi-LASER and MEGA-PRESS. Examples of pulses, simulations, and data fitting are shown in Vespa application interfaces for various steps to demonstrate the interactive workflow.

Conclusion: Vespa provides an efficient and extensible platform for characterizing RF pulses, pulse design, spectral simulation optimization, and automated LCM fitting via an interactive platform. Modular design and command line interface make it easy to embed in other platforms. As open source, it is free to the MRS community for use and extension. Vespa source code and documentation are available through GitHub.

Citing Articles

An Accelerated Spectroscopic MRI Metabolite Quantification Based on a Deep Learning Method for Radiation Therapy Planning in Brain Tumor Patients.

Giuffrida A, Ramesh K, Sheriff S, Maudsley A, Weinberg B, Cooper L Cancers (Basel). 2025; 17(3).

PMID: 39941791 PMC: 11816355. DOI: 10.3390/cancers17030423.


Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain.

Moon C, Lieberman F, Hetherington H, Pan J Tomography. 2025; 11(1.

PMID: 39852687 PMC: 11769540. DOI: 10.3390/tomography11010007.


Macromolecule Modelling for Improved Metabolite Quantification Using Short Echo Time Brain H-MRS at 3 T and 7 T: The PRaMM Model.

DellOrco A, Riemann L, Ellison S, Aydin S, Goschel L, Ittermann B NMR Biomed. 2024; 38(1):e5299.

PMID: 39701127 PMC: 11658865. DOI: 10.1002/nbm.5299.


PyAMARES, an Open-Source Python Library for Fitting Magnetic Resonance Spectroscopy Data.

Xu J, Vaeggemose M, Schulte R, Yang B, Lee C, Laustsen C Diagnostics (Basel). 2024; 14(23).

PMID: 39682576 PMC: 11639817. DOI: 10.3390/diagnostics14232668.


Plasma p-tau181 and GFAP reflect 7T MR-derived changes in Alzheimer's disease: A longitudinal study of structural and functional MRI and MRS.

Goschel L, DellOrco A, Fillmer A, Aydin S, Ittermann B, Riemann L Alzheimers Dement. 2024; 20(12):8684-8699.

PMID: 39558898 PMC: 11667506. DOI: 10.1002/alz.14318.


References
1.
Oz G, Deelchand D, Wijnen J, Mlynarik V, Xin L, Mekle R . Advanced single voxel H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations. NMR Biomed. 2020; :e4236. PMC: 7347431. DOI: 10.1002/nbm.4236. View

2.
Bartha R, Drost D, Menon R, Williamson P . Spectroscopic lineshape correction by QUECC: combined QUALITY deconvolution and eddy current correction. Magn Reson Med. 2000; 44(4):641-5. DOI: 10.1002/1522-2594(200010)44:4<641::aid-mrm19>3.0.co;2-g. View

3.
Govind V, Young K, Maudsley A . Corrigendum: proton NMR chemical shifts and coupling constants for brain metabolites. Govindaraju V, Young K, Maudsley AA, NMR Biomed. 2000; 13: 129-153. NMR Biomed. 2015; 28(7):923-4. DOI: 10.1002/nbm.3336. View

4.
Soher B, Vermathen P, Schuff N, Wiedermann D, Meyerhoff D, Weiner M . Short TE in vivo (1)H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis. Magn Reson Imaging. 2000; 18(9):1159-65. DOI: 10.1016/s0730-725x(00)00212-5. View

5.
Edden R, Puts N, Harris A, Barker P, Evans C . Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging. 2014; 40(6):1445-52. PMC: 4280680. DOI: 10.1002/jmri.24478. View